Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of nurzhanit/whisper-enhanced-ml on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Wer: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0417 0.8475 50 0.0308 2.8184
0.0233 1.6949 100 0.0178 2.0473
0.0153 2.5424 150 0.0104 1.5953
0.0121 3.3898 200 0.0056 1.3560
0.0055 4.2373 250 0.0039 0.8508
0.0061 5.0847 300 0.0022 0.3457
0.0026 5.9322 350 0.0012 0.2127
0.0018 6.7797 400 0.0008 0.0798
0.0015 7.6271 450 0.0006 0.1595
0.0009 8.4746 500 0.0005 0.0266
0.0004 9.3220 550 0.0003 0.0266
0.0003 10.1695 600 0.0002 0.0
0.0002 11.0169 650 0.0003 0.0266
0.0002 11.8644 700 0.0002 0.0266
0.0002 12.7119 750 0.0002 0.0
0.0002 13.5593 800 0.0002 0.0
0.0002 14.4068 850 0.0002 0.0
0.0002 15.2542 900 0.0002 0.0
0.0001 16.1017 950 0.0001 0.0
0.0002 16.9492 1000 0.0001 0.0

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
91,934
Safetensors
Model size
242M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for nurzhanit/whisper-omg-2

Unable to build the model tree, the base model loops to the model itself. Learn more.

Dataset used to train nurzhanit/whisper-omg-2

Evaluation results