license: apache-2.0
language:
- ko
- en
pipeline_tag: visual-question-answering
tags:
- text2text-generation
base_model: google/deplot
Ko-Deplot
Ko-Deplot is a korean Visual-QA model based on the Google's Pix2Struct architecture. It was fine-tuned from Deplot, using korean chart image-text pairs.
Ko-Deplot์ Google์ Pix2Struct ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ํ๊ตญ์ด Visual-QA ๋ชจ๋ธ์ ๋๋ค. Deplot ๋ชจ๋ธ์ ํ๊ตญ์ด ์ฐจํธ ์ด๋ฏธ์ง-ํ ์คํธ ์ ๋ฐ์ดํฐ์ ์ ์ด์ฉํ์ฌ ํ์ธํ๋ํ์์ต๋๋ค.
- Developed by: NUUA
- Model type: Visual Question Answering
- License: apache-2.0
- Finetuned from model: google/deplot
Model Usage
You can run a prediction by querying an input image together with a question as follows:
์๋์ ์ฝ๋๋ฅผ ์ด์ฉํ์ฌ ๋ชจ๋ธ ์ถ๋ก ์ ํ ์ ์์ต๋๋ค:
from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
from PIL import Image
processor = Pix2StructProcessor.from_pretrained('nuua/Ko-Deplot')
model = Pix2StructForConditionalGeneration.from_pretrained('nuua/Ko-Deplot')
IMAGE_PATH = "LOCAL_PATH_TO_IMAGE"
image = Image.open(IMAGE_PATH)
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
Training Details
Training Data
Synthetic chart data from three libraries were used:
์ธ ๊ฐ์ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์์ ํฉ์ฑ ์ฐจํธ ๋ฐ์ดํฐ๋ฅผ ์์ฑํ์ฌ ์ฌ์ฉํ์์ต๋๋ค:
Training Procedure
The model was first exposed to a short warmup stage, following its original paper. It was then trained using the chart data for 50,000 steps.
ํ์ต์ ์ํด ์ฒ์ ์งง์ "warmup" ๋จ๊ณ๋ฅผ ๊ฑฐ์ณ ํ๊ธ์ ํ์ต์ํจ ํ 50,000 ์คํ ๋์ ์ฐจํธ ๋ฐ์ดํฐ๋ฅผ ํ์ต์์ผฐ์ต๋๋ค.
Technical Specifications
Hardware
Ko-Deplot was trained by using A100 80G.
A100 80G GPU๋ฅผ ์ด์ฉํ์ฌ ํ์ตํ์์ต๋๋ค.
Contact
Any questions and suggestions, please use the discussion tab. If you want to contact us directly, email [email protected].