Safetensors
custom_code
RADIO-g / forward_intermediates.py
gheinrich's picture
Upload model (#1)
b240ec6 verified
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from typing import Callable, List, Optional, Set, Tuple, Union, Any, Iterable
from types import MethodType
import torch
from torch import nn
from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
def _take_indices(
num_blocks: int,
n: Optional[Union[int, List[int], Tuple[int]]],
) -> Tuple[Set[int], int]:
if isinstance(n, int):
assert n >= 0
take_indices = {x for x in range(num_blocks - n, num_blocks)}
else:
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
return take_indices, max(take_indices)
def forward_intermediates(
model: nn.Module,
patch_extractor: Callable[[torch.Tensor], torch.Tensor],
norm: nn.Module,
num_summary_tokens: int,
num_cls_tokens: int,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
return_prefix_tokens: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
aggregation: Optional[str] = "sparse",
inter_feature_normalizer: Optional[IntermediateFeatureNormalizerBase] = None,
norm_alpha_scheme = "post-alpha",
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}
Args:
x: Input image tensor
indices: Take last n blocks if int, select matching indices if sequence
return_prefix_tokens: Return both prefix and spatial intermediate tokens
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
aggregation: intermediate layer aggregation method (sparse or dense)
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha")
Returns:
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
reshape = output_fmt == 'NCHW'
intermediates = []
blocks = model.blocks
take_indices, max_index = _take_indices(len(blocks), indices)
take_indices = sorted(take_indices)
# forward pass
B, _, height, width = x.shape
x = patch_extractor(x)
if stop_early:
blocks = blocks[:max_index + 1]
if inter_feature_normalizer is None or norm_alpha_scheme == 'none':
inter_feature_normalizer = NullIntermediateFeatureNormalizer.get_instance(x.dtype, x.device)
assert norm_alpha_scheme in ('none', 'pre-alpha', 'post-alpha'), f'Unsupported alpha scheme: {norm_alpha_scheme}'
post_alpha_scheme = norm_alpha_scheme == 'post-alpha'
accumulator = 0
alpha_sum = 0
num_accumulated = 0
take_off = 0
for i, blk in enumerate(blocks):
x = blk(x)
if aggregation == "dense":
# Arbitrarily use the rotation matrix from the final layer in the dense group
y, alpha = inter_feature_normalizer(x, i, rot_index=take_indices[take_off], skip=num_summary_tokens)
if post_alpha_scheme:
accumulator = accumulator + y
alpha_sum = alpha_sum + alpha
else:
accumulator = accumulator + (alpha * y)
alpha_sum += 1
num_accumulated += 1
if i == take_indices[take_off]:
if aggregation == "dense":
alpha = alpha_sum / num_accumulated
x_ = alpha * accumulator / num_accumulated
num_accumulated = 0
accumulator = 0
alpha_sum = 0
else:
y, alpha = inter_feature_normalizer(x, i, skip=num_summary_tokens)
x_ = alpha * y
# normalize intermediates with final norm layer if enabled
intermediates.append(norm(x_))
take_off = min(take_off + 1, len(take_indices) - 1)
# process intermediates
# split prefix (e.g. class, distill) and spatial feature tokens
prefix_tokens = [y[:, :num_cls_tokens] for y in intermediates]
intermediates = [y[:, num_summary_tokens:] for y in intermediates]
if reshape:
# reshape to BCHW output format
H = height // model.patch_size
W = width // model.patch_size
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if not torch.jit.is_scripting() and return_prefix_tokens:
# return_prefix not support in torchscript due to poor type handling
intermediates = list(zip(prefix_tokens, intermediates))
if intermediates_only:
return intermediates
x = norm(x)
return x, intermediates