YAML Metadata Error: "language" with value "zh-tw" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

BERT DRCD 384

This model is a fine-tune checkpoint of bert-base-chinese, fine-tuned on DRCD dataset. This model reaches a F1 score of 86. This model reaches a EM score of 83.

Training Arguments:

  • length: 384

  • stride: 128

  • learning_rate: 3e-5

  • batch_size: 10

  • epoch: 3

Colab for detailed

Deployment

Deploy BERT-DRCD-QuestionAnswering model using FastAPI and containerized using Docker.

Usage

In Transformers

text = "鴻海科技集團是由臺灣企業家郭台銘創辦的跨國企業,總部位於臺灣新北市土城區,主要生產地則在中國大陸,以富士康做為商標名稱。其專注於電子產品的代工服務,研發生產精密電氣元件、機殼、準系統、系統組裝、光通訊元件、液晶顯示件等3C產品上、下游產品及服務。"
query = "鴻海集團總部位於哪裡?"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = BertTokenizerFast.from_pretrained("nyust-eb210/braslab-bert-drcd-384")
model = BertForQuestionAnswering.from_pretrained("nyust-eb210/braslab-bert-drcd-384").to(device)
encoded_input = tokenizer(text, query, return_tensors="pt").to(device)
qa_outputs = model(**encoded_input)

start = torch.argmax(qa_outputs.start_logits).item()
end = torch.argmax(qa_outputs.end_logits).item()
answer = encoded_input.input_ids.tolist()[0][start : end + 1]
answer = "".join(tokenizer.decode(answer).split())

start_prob = torch.max(torch.nn.Softmax(dim=-1)(qa_outputs.start_logits)).item()
end_prob = torch.max(torch.nn.Softmax(dim=-1)(qa_outputs.end_logits)).item()
confidence = (start_prob + end_prob) / 2
print(answer, confidence) # 臺灣新北市土城區, 0.92
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.