|
--- |
|
library_name: transformers |
|
language: |
|
- yo |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Naija |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Naija |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5037 |
|
- Wer: 46.0115 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 1.3494 | 0.1022 | 250 | 1.4026 | 80.6179 | |
|
| 0.962 | 0.2045 | 500 | 1.0016 | 68.3649 | |
|
| 0.751 | 0.3067 | 750 | 0.8457 | 58.7227 | |
|
| 0.6622 | 0.4090 | 1000 | 0.7606 | 56.7281 | |
|
| 0.601 | 0.5112 | 1250 | 0.7057 | 55.7731 | |
|
| 0.6004 | 0.6135 | 1500 | 0.6700 | 51.7955 | |
|
| 0.5235 | 0.7157 | 1750 | 0.6341 | 53.2861 | |
|
| 0.4939 | 0.8180 | 2000 | 0.6102 | 53.3002 | |
|
| 0.4897 | 0.9202 | 2250 | 0.5913 | 52.4227 | |
|
| 0.3799 | 1.0225 | 2500 | 0.5749 | 50.2787 | |
|
| 0.3693 | 1.1247 | 2750 | 0.5623 | 48.4396 | |
|
| 0.3498 | 1.2270 | 3000 | 0.5506 | 48.1969 | |
|
| 0.3438 | 1.3292 | 3250 | 0.5425 | 48.5770 | |
|
| 0.3498 | 1.4315 | 3500 | 0.5342 | 46.8116 | |
|
| 0.3126 | 1.5337 | 3750 | 0.5248 | 46.8427 | |
|
| 0.3215 | 1.6360 | 4000 | 0.5172 | 46.2891 | |
|
| 0.3318 | 1.7382 | 4250 | 0.5126 | 47.7971 | |
|
| 0.3108 | 1.8405 | 4500 | 0.5080 | 46.3594 | |
|
| 0.3499 | 1.9427 | 4750 | 0.5049 | 46.7832 | |
|
| 0.2664 | 2.0450 | 5000 | 0.5037 | 46.0115 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|