Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.1-Storm-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a1625b71fb80bc58_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a1625b71fb80bc58_train_data.json
  type:
    field_instruction: abstr
    field_output: title
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: oldiday/0a55cf57-ccc5-4e72-b34c-e85f60a6e6d3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/a1625b71fb80bc58_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 6bc2b3e0-fd82-4cff-b7cd-46fbf7dac574
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: 6bc2b3e0-fd82-4cff-b7cd-46fbf7dac574
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

0a55cf57-ccc5-4e72-b34c-e85f60a6e6d3

This model is a fine-tuned version of unsloth/Llama-3.1-Storm-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 2.5844
1.3032 0.0034 50 1.1754
1.2835 0.0067 100 1.1511
1.3402 0.0101 150 1.1447
1.2573 0.0135 200 1.1308
1.2667 0.0168 250 1.1223
1.2793 0.0202 300 1.1171
1.2223 0.0236 350 1.1081
1.2065 0.0269 400 1.1036
1.2477 0.0303 450 1.1013
1.2314 0.0337 500 1.1002
1.2192 0.0370 550 1.0988
1.2627 0.0404 600 1.0987

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for oldiday/0a55cf57-ccc5-4e72-b34c-e85f60a6e6d3

Adapter
(279)
this model