oliverguhr's picture
initial commit
b825691
|
raw
history blame
2.81 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: bart-base-spelling-de
    results: []

bart-base-spelling-de

This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1065
  • Cer: 0.2022

Model description

This is a proof of concept spelling correction model for german.

Intended uses & limitations

This is work in progress, be aware that the model can produce artifacts. You can test the model using the pipeline interface:

from transformers import pipeline

fix_spelling = pipeline("text2text-generation",model="oliverguhr/spelling-correction-german-base")

print(fix_spelling("das idst ein neuZr test",max_length=2048))

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.2803 0.11 1000 0.1978 0.9429
0.1688 0.21 2000 0.1472 0.9426
0.121 0.32 3000 0.1381 0.9424
0.1722 0.43 4000 0.1340 0.9425
0.1502 0.54 5000 0.1292 0.9423
0.1556 0.64 6000 0.1260 0.9424
0.1624 0.75 7000 0.1246 0.9425
0.1337 0.86 8000 0.1213 0.9424
0.131 0.96 9000 0.1195 0.9423
0.1137 1.07 10000 0.1178 0.9424
0.0958 1.18 11000 0.1166 0.9422
0.1067 1.28 12000 0.1147 0.9422
0.1201 1.39 13000 0.1135 0.9423
0.1115 1.5 14000 0.1111 0.9423
0.1284 1.61 15000 0.1101 0.9422
0.0947 1.71 16000 0.1085 0.9422
0.1081 1.82 17000 0.1073 0.9422
0.099 1.93 18000 0.1065 0.9422

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.1.0
  • Tokenizers 0.12.1