metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-spelling-de
results: []
bart-base-spelling-de
This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1065
- Cer: 0.2022
Model description
This is a proof of concept spelling correction model for german.
Intended uses & limitations
This is work in progress, be aware that the model can produce artifacts. You can test the model using the pipeline interface:
from transformers import pipeline
fix_spelling = pipeline("text2text-generation",model="oliverguhr/spelling-correction-german-base")
print(fix_spelling("das idst ein neuZr test",max_length=2048))
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.2803 | 0.11 | 1000 | 0.1978 | 0.9429 |
0.1688 | 0.21 | 2000 | 0.1472 | 0.9426 |
0.121 | 0.32 | 3000 | 0.1381 | 0.9424 |
0.1722 | 0.43 | 4000 | 0.1340 | 0.9425 |
0.1502 | 0.54 | 5000 | 0.1292 | 0.9423 |
0.1556 | 0.64 | 6000 | 0.1260 | 0.9424 |
0.1624 | 0.75 | 7000 | 0.1246 | 0.9425 |
0.1337 | 0.86 | 8000 | 0.1213 | 0.9424 |
0.131 | 0.96 | 9000 | 0.1195 | 0.9423 |
0.1137 | 1.07 | 10000 | 0.1178 | 0.9424 |
0.0958 | 1.18 | 11000 | 0.1166 | 0.9422 |
0.1067 | 1.28 | 12000 | 0.1147 | 0.9422 |
0.1201 | 1.39 | 13000 | 0.1135 | 0.9423 |
0.1115 | 1.5 | 14000 | 0.1111 | 0.9423 |
0.1284 | 1.61 | 15000 | 0.1101 | 0.9422 |
0.0947 | 1.71 | 16000 | 0.1085 | 0.9422 |
0.1081 | 1.82 | 17000 | 0.1073 | 0.9422 |
0.099 | 1.93 | 18000 | 0.1065 | 0.9422 |
Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.1.0
- Tokenizers 0.12.1