πŸ€— Live Demo here: https://huggingface.co/spaces/omoured/YOLOv10-Document-Layout-Analysis

About πŸ“‹

The models were fine-tuned using 4xA100 GPUs on the Doclaynet-base dataset, which consists of 69103 training images, 6480 validation images, and 4994 test images.

Results πŸ“Š

Model mAP50 mAP50-95 Model Weights
YOLOv10-x 0.924 0.740 Download
YOLOv10-b 0.922 0.732 Download
YOLOv10-l 0.921 0.732 Download
YOLOv10-m 0.917 0.737 Download
YOLOv10-s 0.905 0.713 Download
YOLOv10-n 0.892 0.685 Download

Codes πŸ”₯

Check out our Github repo for inference codes: https://github.com/moured/YOLOv10-Document-Layout-Analysis

References πŸ“

  1. YOLOv10
BibTeX
@article{wang2024yolov10,
  title={YOLOv10: Real-Time End-to-End Object Detection},
  author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
  journal={arXiv preprint arXiv:2405.14458},
  year={2024}
}
  1. DocLayNet
@article{doclaynet2022,
  title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis},  
  doi = {10.1145/3534678.353904},
  url = {https://arxiv.org/abs/2206.01062},
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
  year = {2022}
}

Contact

LinkedIn: https://www.linkedin.com/in/omar-moured/

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train omoured/YOLOv10-Document-Layout-Analysis