|
--- |
|
license: bsd-3-clause |
|
base_model: MIT/ast-finetuned-audioset-10-10-0.450 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ast-finetuned-audioset-10-10-0.450-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.88 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ast-finetuned-audioset-10-10-0.450-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.450](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.450) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4457 |
|
- Accuracy: 0.88 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.5804 | 1.0 | 57 | 0.5356 | 0.84 | |
|
| 0.2655 | 2.0 | 114 | 0.5664 | 0.76 | |
|
| 0.1767 | 3.0 | 171 | 0.3925 | 0.88 | |
|
| 0.4169 | 4.0 | 228 | 0.8874 | 0.78 | |
|
| 0.0685 | 5.0 | 285 | 0.6067 | 0.83 | |
|
| 0.0725 | 6.0 | 342 | 0.5612 | 0.81 | |
|
| 0.1003 | 7.0 | 399 | 0.6928 | 0.82 | |
|
| 0.004 | 8.0 | 456 | 0.4814 | 0.86 | |
|
| 0.0122 | 9.0 | 513 | 0.6141 | 0.86 | |
|
| 0.0009 | 10.0 | 570 | 0.4017 | 0.91 | |
|
| 0.0828 | 11.0 | 627 | 0.4937 | 0.88 | |
|
| 0.0025 | 12.0 | 684 | 0.8455 | 0.82 | |
|
| 0.0005 | 13.0 | 741 | 0.4439 | 0.89 | |
|
| 0.0001 | 14.0 | 798 | 0.4956 | 0.87 | |
|
| 0.0001 | 15.0 | 855 | 0.4362 | 0.88 | |
|
| 0.0001 | 16.0 | 912 | 0.4146 | 0.89 | |
|
| 0.0299 | 17.0 | 969 | 0.4241 | 0.9 | |
|
| 0.0001 | 18.0 | 1026 | 0.4375 | 0.87 | |
|
| 0.0001 | 19.0 | 1083 | 0.4502 | 0.88 | |
|
| 0.0001 | 20.0 | 1140 | 0.4457 | 0.88 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|