oneonlee's picture
End of training
a1e0d8d verified
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: flan-t5-small-qclassifier_new_0.6-droprob_0.2-smooth_0.1-lr_1e-5-dcy_0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-qclassifier_new_0.6-droprob_0.2-smooth_0.1-lr_1e-5-dcy_0.1
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5694
- Precision: 0.7409
- Recall: 1.0
- F1: 0.8512
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.6201 | 1.0 | 193 | 0.5847 | 0.7395 | 1.0 | 0.8502 |
| 0.5868 | 2.0 | 386 | 0.5770 | 0.7395 | 1.0 | 0.8502 |
| 0.5791 | 3.0 | 579 | 0.5728 | 0.7395 | 1.0 | 0.8502 |
| 0.5736 | 4.0 | 772 | 0.5746 | 0.7395 | 1.0 | 0.8502 |
| 0.5713 | 5.0 | 965 | 0.5694 | 0.7409 | 1.0 | 0.8512 |
| 0.5678 | 6.0 | 1158 | 0.5697 | 0.7404 | 0.9947 | 0.8489 |
| 0.5664 | 7.0 | 1351 | 0.5694 | 0.7413 | 0.9869 | 0.8466 |
| 0.5639 | 8.0 | 1544 | 0.5693 | 0.7409 | 0.9798 | 0.8438 |
| 0.5623 | 9.0 | 1737 | 0.5707 | 0.7428 | 0.9772 | 0.8441 |
| 0.5602 | 10.0 | 1930 | 0.5700 | 0.7470 | 0.9702 | 0.8441 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1