ongkn's picture
End of training
e136273 verified
|
raw
history blame
2.32 kB
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: attraction-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7902542372881356
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# attraction-classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5746
- Accuracy: 0.7903
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 69
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4968 | 1.13 | 150 | 0.5187 | 0.7627 |
| 0.4266 | 2.26 | 300 | 0.4863 | 0.7627 |
| 0.3521 | 3.38 | 450 | 0.5066 | 0.7627 |
| 0.3407 | 4.51 | 600 | 0.4736 | 0.7860 |
| 0.2895 | 5.64 | 750 | 0.5043 | 0.7712 |
| 0.2595 | 6.77 | 900 | 0.6222 | 0.7669 |
| 0.2132 | 7.89 | 1050 | 0.4935 | 0.8008 |
| 0.2156 | 9.02 | 1200 | 0.5229 | 0.7924 |
| 0.192 | 10.15 | 1350 | 0.5168 | 0.7881 |
| 0.1329 | 11.28 | 1500 | 0.5746 | 0.7903 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0