metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6552845528455284
Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.1034
- Accuracy: 0.6553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1966 | 1.0 | 923 | 1.1276 | 0.5995 |
1.0326 | 2.0 | 1846 | 1.0374 | 0.6360 |
0.6666 | 3.0 | 2769 | 1.0904 | 0.6415 |
0.4288 | 4.0 | 3692 | 1.2437 | 0.6474 |
0.2209 | 5.0 | 4615 | 1.4346 | 0.6404 |
0.1143 | 6.0 | 5538 | 1.6952 | 0.6442 |
0.1733 | 7.0 | 6461 | 1.9268 | 0.6547 |
0.0409 | 8.0 | 7384 | 2.2016 | 0.6518 |
0.0999 | 9.0 | 8307 | 2.4623 | 0.6485 |
0.0104 | 10.0 | 9230 | 2.6094 | 0.6534 |
0.0424 | 11.0 | 10153 | 2.7340 | 0.6558 |
0.0463 | 12.0 | 11076 | 2.8098 | 0.6599 |
0.0005 | 13.0 | 11999 | 2.9333 | 0.6553 |
0.0144 | 14.0 | 12922 | 2.9705 | 0.6531 |
0.0002 | 15.0 | 13845 | 3.0020 | 0.6566 |
0.0157 | 16.0 | 14768 | 3.0642 | 0.6588 |
0.0005 | 17.0 | 15691 | 3.0529 | 0.6575 |
0.0029 | 18.0 | 16614 | 3.0952 | 0.6558 |
0.0024 | 19.0 | 17537 | 3.0982 | 0.6572 |
0.0001 | 20.0 | 18460 | 3.1034 | 0.6553 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1