|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import timm.models.vision_transformer |
|
|
|
|
|
class VisionTransformer(timm.models.vision_transformer.VisionTransformer): |
|
""" Vision Transformer with support for global average pooling |
|
""" |
|
def __init__(self, global_pool=False, **kwargs): |
|
super(VisionTransformer, self).__init__(**kwargs) |
|
|
|
self.global_pool = global_pool |
|
if self.global_pool: |
|
norm_layer = kwargs['norm_layer'] |
|
embed_dim = kwargs['embed_dim'] |
|
self.fc_norm = norm_layer(embed_dim) |
|
|
|
del self.norm |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
if self.global_pool: |
|
x = x[:, 1:, :].mean(dim=1) |
|
outcome = self.fc_norm(x) |
|
else: |
|
x = self.norm(x) |
|
outcome = x[:, 0] |
|
|
|
return outcome |
|
|
|
|
|
def vit_large_patch16(**kwargs): |
|
model = VisionTransformer( |
|
img_size=224,patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|