Journalists on Hugging Face

community

AI & ML interests

Democratizing access to useful AI tools and resources for journalists

Recent Activity

fdaudens  updated a collection 3 days ago
Text-to-Speech & Audio Tools
fdaudens  updated a collection 3 days ago
Image Tools
fdaudens  updated a collection 3 days ago
Image Tools
View all activity

JournalistsonHF's activity

Kseniase 
posted an update about 4 hours ago
view post
Post
379
8 New Types of RAG

RAG techniques continuously evolve to enhance LLM response accuracy by retrieving relevant external data during generation. To keep up with current AI trends, new RAG types incorporate deep step-by-step reasoning, tree search, citations, multimodality and other effective techniques.

Here's a list of 8 latest RAG advancements:

1. DeepRAG -> DeepRAG: Thinking to Retrieval Step by Step for Large Language Models (2502.01142)
Models retrieval-augmented reasoning as a Markov Decision Process, enabling strategic retrieval. It dynamically decides when to retrieve external knowledge and when rely on parametric reasoning.

2. RealRAG -> RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning (2502.00848)
Enhances  novel object generation by retrieving real-world images and using self-reflective contrastive learning to fill knowledge gap, improve realism and reduce distortions.

3. Chain-of-Retrieval Augmented Generation (CoRAG) -> Chain-of-Retrieval Augmented Generation (2501.14342)
Retrieves information step-by-step and adjusts it, also deciding how much compute power to use at test time. If needed it reformulates queries.

4. VideoRAG -> VideoRAG: Retrieval-Augmented Generation over Video Corpus (2501.05874)
Enables unlimited-length video processing, using dual-channel architecture that integrates graph-based textual grounding and multi-modal context encoding.

5. CFT-RAG ->  CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter (2501.15098)
A tree-RAG acceleration method uses an improved Cuckoo Filter to optimize entity localization, enabling faster retrieval.

6. Contextualized Graph RAG (CG-RAG) -> CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs (2501.15067)
Uses Lexical-Semantic Graph Retrieval (LeSeGR) to integrate sparse and dense signals within graph structure and capture citation relationships

7. GFM-RAG -> GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation (2502.01113)
A graph foundation model that uses a graph neural network to refine query-knowledge connections

8. URAG -> URAG: Implementing a Unified Hybrid RAG for Precise Answers in University Admission Chatbots -- A Case Study at HCMUT (2501.16276)
A hybrid system combining rule-based and RAG methods to improve lightweight LLMs for educational chatbots
Kseniase 
posted an update 7 days ago
view post
Post
4753
8 Free Sources on Reinforcement Learning

With the phenomenon of DeepSeek-R1's top reasoning capabilities, we all saw the true power of RL. At its core, RL is a type of machine learning where a model/agent learns to make decisions by interacting with an environment to maximize a reward. RL learns through trial and error, receiving feedback in the form of rewards or penalties.

Here's a list of free sources that will help you dive into RL and how to use it:

1. "Reinforcement Learning: An Introduction" book by Richard S. Sutton and Andrew G. Barto -> https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

2. Hugging Face Deep Reinforcement Learning Course -> https://huggingface.co/learn/deep-rl-course/unit0/introduction
You'll learn how to train agents in unique environments, using best libraries, share your results, compete in challenges, and earn a certificate.

3. OpenAI Spinning Up in Deep RL -> https://spinningup.openai.com/en/latest/index.html
A comprehensive overview of RL with many useful resources

4. "Reinforcement Learning and Optimal Control" books, video lectures and course material by Dimitri P. Bertsekas from ASU -> https://web.mit.edu/dimitrib/www/RLbook.html
Explores approximate Dynamic Programming (DP) and RL with key concepts and methods like rollout, tree search, and neural network training for RL and more.

5. RL Course by David Silver (Google DeepMind) -> https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPeb
Many recommend these video lectures as a good foundation

6. RL theory seminars -> https://sites.google.com/view/rltheoryseminars/home?authuser=0
Provides virtual seminars from different experts about RL advancements

7. "Reinforcement Learning Specialization" (a 4-course series on Coursera) -> https://www.coursera.org/learn/fundament

8. Concepts: RLHF, RLAIF, RLEF, RLCF -> https://www.turingpost.com/p/rl-f
Our flashcards easily explain what are these four RL approaches with different feedback
clem 
posted an update 13 days ago
view post
Post
6961
AI is not a zero-sum game. Open-source AI is the tide that lifts all boats!
Kseniase 
posted an update 14 days ago
view post
Post
3012
7 Open-source Methods to Improve Video Generation and Understanding

AI community is making great strides toward achieving the full potential of multimodality in video generation and understanding. Last week studies showed that working with videos is now one of the main focuses for improving AI models. Another highlight of the week is that open source, once again, proves its value. For those who were impressed by DeepSeek-R1, we’re with you!

Today, we’re combining these two key focuses and bringing you a list of open-source methods for better video generation and understanding:

1. VideoLLaMA 3 model: Excels in various video and image tasks thanks to vision-centric training approach. VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding (2501.13106)

2. FILMAGENT framework assigns roles to multiple AI agents, like a director, screenwriter, actor, and cinematographer, to automate the filmmaking process in 3D virtual environments. FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces (2501.12909)

3. Improving Video Generation with Human Feedback (2501.13918) proposes a new VideoReward Model and approach that uses human feedback to refine video generation models.

4. DiffuEraser video inpainting model, based on stable diffusion, is designed to fill in missing areas with detailed, realistic content and to ensure consistent structures across frames. DiffuEraser: A Diffusion Model for Video Inpainting (2501.10018)

5. MAGI is a hybrid video gen model that combines masked and casual modeling. Its key innovation, Complete Teacher Forcing (CTF), conditions masked frames on fully visible frames. Taming Teacher Forcing for Masked Autoregressive Video Generation (2501.12389)

6. Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise (2501.08331) proposes motion control, allowing users to guide how objects or the camera move in generated videos. Its noise warping algorithm replaces random noise in videos with structured noise based on motion info.

7. Video Depth Anything model estimates depth consistently in super-long videos (several minutes or more) without sacrificing quality or speed. Video Depth Anything: Consistent Depth Estimation for Super-Long Videos (2501.12375)
clem 
posted an update 16 days ago
Kseniase 
posted an update 21 days ago
view post
Post
2005
10 Recent Advancements in Math Reasoning

Over the last few weeks, we have witnessed a surge in AI models' math reasoning capabilities. Top companies like Microsoft, NVIDIA, and Alibaba Qwen have already joined this race to make models "smarter" in mathematics. But why is this shift happening now?

Complex math calculations require advanced multi-step reasoning, making mathematics an ideal domain for demonstrating a model's strong "thinking" capabilities. Additionally, as AI continues to evolve and is applied in math-intensive fields such as machine learning and quantum computing (which is predicted to see significant growth in 2025), it must meet the demands of complex reasoning.
Moreover, AI models can be integrated with external tools like symbolic solvers or computational engines to tackle large-scale math problems, which also needs high-quality math reasoning.

So here’s a list of 10 recent advancements in math reasoning of AI models:

1. NVIDIA: AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling (2412.15084)

2. Qwen, Alibaba: Qwen2.5-Math-PRM The Lessons of Developing Process Reward Models in Mathematical Reasoning (2501.07301) and PROCESSBENCH evaluation ProcessBench: Identifying Process Errors in Mathematical Reasoning (2412.06559)

3. Microsoft Research: rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking (2501.04519)

4. BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning (2501.03226)

5. URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics (2501.04686)

6. U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs (2412.03205)

7. Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs (2501.06430)

8. End-to-End Bangla AI for Solving Math Olympiad Problem Benchmark: Leveraging Large Language Model Using Integrated Approach (2501.04425)

9. Quantization Meets Reasoning: Exploring LLM Low-Bit Quantization Degradation for Mathematical Reasoning (2501.03035)

10. System-2 Mathematical Reasoning via Enriched Instruction Tuning (2412.16964)
Kseniase 
posted an update 23 days ago
view post
Post
718
Today, we spoke with Snowflake’s AI Research Team Leads, Yuxiong He and Samyam Rajbhandari ( @samyam ) (he is also one the researchers behind DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference (2401.08671) and other DeepSpeed papers)

Collaborating with their co-authors to reduce inference costs for enterprise-specific tasks, they observed that inputs are often significantly larger than outputs. This is because it’s in the nature of enterprises to analyze enormous amounts of information trying to extract valuable insights, which are much shorter. To address this, they developed SwiftKV SwiftKV: Fast Prefill-Optimized Inference with Knowledge-Preserving Model Transformation (2410.03960), an optimization that reduces LLM inference costs by up to 75% for Meta Llama LLMs, enhancing efficiency and performance in enterprise AI tasks.

Today they are open-sourcing SwiftKV ( Snowflake/Llama-3.1-SwiftKV-8B-Instruct) and ArcticTrainging Platform.
In our new episode "15 minutes with a Researcher" they explain how SwiftKV works, its applicability to other architectures, its limitations, and additional methods to further reduce computation costs in inference.
Watch the full 15 min interview here (https://youtu.be/9x1k7eXe-6Q?si=4_HQOyi1CPHgvlrx)
meg 
posted an update 27 days ago
view post
Post
3032
💫...And we're live!💫 Seasonal newsletter from ethicsy folks at Hugging Face, exploring the ethics of "AI Agents"
https://huggingface.co/blog/ethics-soc-7
Our analyses found:
- There's a spectrum of "agent"-ness
- *Safety* is a key issue, leading to many other value-based concerns
Read for details & what to do next!
With @evijit , @giadap , and @sasha
yjernite 
posted an update 27 days ago
view post
Post
2200
🤗👤 💻 Speaking of AI agents ...
...Is easier with the right words ;)

My colleagues @meg @evijit @sasha and @giadap just published a wonderful blog post outlining some of the main relevant notions with their signature blend of value-informed and risk-benefits contrasting approach. Go have a read!

https://huggingface.co/blog/ethics-soc-7
Kseniase 
posted an update 28 days ago
view post
Post
1907
10 AI Systems for Scientific Research

Almost every AI researcher has studied or conducted a large number of AI research papers. So, it's quite logical that researchers are trying to create AI systems to help conduct research. Creating scientific research could be much easier and more varied if we use LLMs and AI assistants tailored for this purpose. Just imagine how interesting it would be to read high-quality research about AI made by an AI agent.

Today, we offer you to explore these 10 AI systems for scientific research:

1. Agent Laboratory framework helps researchers input their ideas by generating a research report and code repository: Agent Laboratory: Using LLM Agents as Research Assistants (2501.04227)

2. AI Scientist performs fully automated scientific discovery including creating ideas: The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery (2408.06292)

3. SciMON generates new ideas derived from the scientific literature: Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery (2305.14259)

4. ResearchAgent implements LLMs to automate idea generation, methods, and experiment design, and ReviewingAgents' feedback to refine ideas: ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models (2404.07738)

5. Scientific Generative Agent (SGA) discovers novel, coherent solutions in physics and molecular design: LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery (2405.09783)

6. MLRCopilot boosts machine learning research: MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents (2408.14033)

7. SciAgents accelerates material science discovery through combining knowledge graphs, LLMs, and multi-agent systems. SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning (2409.05556)

8. VirSci multi-agent system mimics teamwork among scientists. Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation (2410.09403)

9. Chain-of-Ideas (CoI) agent organizes research into a chain structure. Chain of Ideas: Revolutionizing Research in Novel Idea Development with LLM Agents (2410.13185)

10. A system with CycleResearcher and CycleReviewer generates research papers and peer reviews: CycleResearcher: Improving Automated Research via Automated Review (2411.00816)

LLM4SR: A Survey on Large Language Models for Scientific Research (2501.04306) is worth exploring to study and analyze more systems for scientific research