AI & ML interests

Fusing diffusion models

Recent Activity

fusing's activity

sayakpaul 
posted an update 8 days ago
view post
Post
2825
Inference-time scaling meets Flux.1-Dev (and others) 🔥

Presenting a simple re-implementation of "Inference-time scaling diffusion models beyond denoising steps" by Ma et al.

I did the simplest random search strategy, but results can potentially be improved with better-guided search methods.

Supports Gemini 2 Flash & Qwen2.5 as verifiers for "LLMGrading" 🤗

The steps are simple:

For each round:

1> Starting by sampling 2 starting noises with different seeds.
2> Score the generations w.r.t a metric.
3> Obtain the best generation from the current round.

If you have more compute budget, go to the next search round. Scale the noise pool (2 ** search_round) and repeat 1 - 3.

This constitutes the random search method as done in the paper by Google DeepMind.

Code, more results, and a bunch of other stuff are in the repository. Check it out here: https://github.com/sayakpaul/tt-scale-flux/ 🤗
sayakpaul 
posted an update 26 days ago
view post
Post
1971
We have been cooking a couple of fine-tuning runs on CogVideoX with finetrainers, smol datasets, and LoRA to generate cool video effects like crushing, dissolving, etc.

We are also releasing a LoRA extraction utility from a fully fine-tuned checkpoint. I know that kind of stuff has existed since eternity, but the quality on video models was nothing short of spectacular. Below are some links:

* Models and datasets: https://huggingface.co/finetrainers
* finetrainers: https://github.com/a-r-r-o-w/finetrainers
* LoRA extraction: https://github.com/huggingface/diffusers/blob/main/scripts/extract_lora_from_model.py
  • 1 reply
·
sayakpaul 
posted an update 29 days ago
view post
Post
1947
We have authored a post to go over the state of video generation in the Diffusers ecosystem 🧨

We cover the models supported, the knobs of optims our users can fire, fine-tuning, and more 🔥

5-6GBs for HunyuanVideo, sky is the limit 🌌 🤗
https://huggingface.co/blog/video_gen
sayakpaul 
posted an update 2 months ago
anton-l 
posted an update 2 months ago
view post
Post
2503
Introducing 📐𝐅𝐢𝐧𝐞𝐌𝐚𝐭𝐡: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
🛠️ carefully extracting math data from Common Crawl;
🔎 iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! 🚀
We’re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
sayakpaul 
posted an update 2 months ago
view post
Post
2190
In the past seven days, the Diffusers team has shipped:

1. Two new video models
2. One new image model
3. Two new quantization backends
4. Three new fine-tuning scripts
5. Multiple fixes and library QoL improvements

Coffee on me if someone can guess 1 - 4 correctly.
  • 1 reply
·
sayakpaul 
posted an update 3 months ago
view post
Post
2135
Introducing a high-quality open-preference dataset to further this line of research for image generation.

Despite being such an inseparable component for modern image generation, open preference datasets are a rarity!

So, we decided to work on one with the community!

Check it out here:
https://huggingface.co/blog/image-preferences
  • 7 replies
·
thomwolf 
posted an update 3 months ago
view post
Post
5762
We are proud to announce HuggingFaceFW/fineweb-2: A sparkling update to HuggingFaceFW/fineweb with 1000s of 🗣️languages.

We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.

🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.

The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.

We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!

In the mean time come ask us question on our chat place: HuggingFaceFW/discussion

H/t @guipenedo @hynky @lvwerra as well as @vsabolcec Bettina Messmer @negar-foroutan and @mjaggi
  • 2 replies
·
sayakpaul 
posted an update 3 months ago
view post
Post
2165
The Control family of Flux from @black-forest-labs should be discussed more!

It enables structural controls like ControlNets while being significantly less expensive to run!

So, we're working on a Control LoRA training script 🤗

It's still WIP, so go easy:
https://github.com/huggingface/diffusers/pull/10130
thomwolf 
posted an update 3 months ago
thomwolf 
posted an update 3 months ago
sayakpaul 
posted an update 3 months ago
thomwolf 
posted an update 3 months ago
thomwolf 
posted an update 3 months ago
sayakpaul 
posted an update 3 months ago
view post
Post
2686
It's been a while we shipped native quantization support in diffusers 🧨

We currently support bistandbytes as the official backend but using others like torchao is already very simple.

This post is just a reminder of what's possible:

1. Loading a model with a quantization config
2. Saving a model with quantization config
3. Loading a pre-quantized model
4. enable_model_cpu_offload()
5. Training and loading LoRAs into quantized checkpoints

Docs:
https://huggingface.co/docs/diffusers/main/en/quantization/bitsandbytes
  • 1 reply
·
thomwolf 
posted an update 4 months ago
view post
Post
4206
Parents in the 1990: Teach the kids to code
Parents now: Teach the kids to fix the code when it starts walking around 🤖✨
  • 2 replies
·