ZeroGPU Explorers

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

zero-gpu-explorers's activity

louisbrulenaudet 
posted an update 9 days ago
view post
Post
3024
I am pleased to introduce my first project built upon Hugging Face’s smolagents framework, integrated with Alpaca for financial market analysis automation 🦙🤗

The project implements technical indicators such as the Relative Strength Index (RSI) and Bollinger Bands to provide momentum and volatility analysis. Market data is retrieved through the Alpaca API, enabling access to historical price information across various timeframes.

AI-powered insights are generated using Hugging Face’s inference API, facilitating the analysis of market trends through natural language processing with DuckDuckGo search integration for real-time sentiment analysis based on financial news 🦆

Link to the GitHub project: https://github.com/louisbrulenaudet/agentic-market-tool

lewtun 
posted an update 15 days ago
view post
Post
4533
Introducing OpenR1-Math-220k!

open-r1/OpenR1-Math-220k

The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch 💪

What’s new compared to existing reasoning datasets?

♾ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.

🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.

📀 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.

⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)

📊 We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.

🔎 Read our blog post for all the nitty gritty details: https://huggingface.co/blog/open-r1/update-2
kadirnar 
posted an update 16 days ago
view post
Post
3758
Researchers developed Sonic AI enabling precise facial animation from speech cues 🎧 Decouples head/expression control via audio tone analysis + time-aware fusion for natural long-form synthesis
  • 1 reply
·

Update README.md

1
#152 opened 18 days ago by
fdaudens
fdaudens 
updated a Space 18 days ago

Update README.md

1
#152 opened 18 days ago by
fdaudens
victor 
posted an update 21 days ago
view post
Post
3976
Hey everyone, we've given https://hf.co/spaces page a fresh update!

Smart Search: Now just type what you want to do—like "make a viral meme" or "generate music"—and our search gets it.

New Categories: Check out the cool new filter bar with icons to help you pick a category fast.

Redesigned Space Cards: Reworked a bit to really show off the app descriptions, so you know what each Space does at a glance.

Random Prompt: Need ideas? Hit the dice button for a burst of inspiration.

We’d love to hear what you think—drop us some feedback plz!
·
Tonic 
posted an update 22 days ago
view post
Post
2214
🙋🏻‍♂️hey there folks ,

Goedel's Theorem Prover is now being demo'ed on huggingface : Tonic/Math

give it a try !
chansung 
posted an update 23 days ago
view post
Post
2903
Simple Paper Review #5

I briefly reviewed the paper "SFT Memorizes, RL Generalizes," which compares SFT and RL in post-training of LLM/VLM from HKU, UC Berkeley, Google DeepMind, and New York University

The conclusion suggests SFT excels in memorization, while RL is better for generalization. However, since LLM/VLM should benefit humans beyond just generalization, a mix of SFT and RL is advisable. Typically, some SFT is followed by RL to understand prompt formats and enhance generalization through trial and error.

The study focused on one model, Llama-3.2-Vision-11B, using environments like General Points for arithmetic reasoning and V-IRL for spatial reasoning. Training data was used for both SFT and RL, with evaluations on in-distribution and out-of-distribution data to assess memorization and generalization.

I want to apply RL extensively, but it requires building a similar simulation environment. For domain-specific models, significant investment in creating a "playground" for the model is crucial, as the effort will directly influence the outcomes.

https://arxiv.org/abs/2501.17161
chansung 
posted an update 24 days ago
view post
Post
4290
A brief summary of the o3-mini

The OpenAI o3-mini model is a significant improvement over the o1-mini, reaching o1 performance levels. While generally good, its performance isn't universally better than previous models (o1, o1-prev.) or GPT-4o across all benchmarks. This means workflows should be re-evaluated with each model upgrade.

The o3-mini has "low," "medium," and "high" versions, with "low" being the base model used for benchmarking. It's speculated that the higher versions simply involve more processing. A fair comparison with other models like Gemini 2.0 Thinking or DeepSeek-R1 would likely need to use the "low" version and a similar "think more" mechanism.

The system card is recommended reading due to its comprehensive benchmark data.

https://openai.com/index/openai-o3-mini/
chansung 
posted an update 28 days ago
view post
Post
2012
Simple summary on DeepSeek AI's Janus-Pro: A fresh take on multimodal AI!

It builds on its predecessor, Janus, by tweaking the training methodology rather than the model architecture. The result? Improved performance in understanding and generating multimodal data.

Janus-Pro uses a three-stage training strategy, similar to Janus, but with key modifications:
✦ Stage 1 & 2: Focus on separate training for specific objectives, rather than mixing data.
✦ Stage 3: Fine-tuning with a careful balance of multimodal data.

Benchmarks show Janus-Pro holds its own against specialized models like TokenFlow XL and MetaMorph, and other multimodal models like SD3 Medium and DALL-E 3.

The main limitation? Low image resolution (384x384). However, this seems like a strategic choice to focus on establishing a solid "recipe" for multimodal models. Future work will likely leverage this recipe and increased computing power to achieve higher resolutions.
Tonic 
posted an update 28 days ago
view post
Post
2921
🙋🏻‍♂️ Hey there folks ,

our team made a game during the @mistral-game-jam and we're trying to win the community award !

try our game out and drop us a ❤️ like basically to vote for us !

Mistral-AI-Game-Jam/TextToSurvive

hope you like it !
victor 
posted an update 28 days ago
view post
Post
3006
Finally, an open-source AI that turns your lyrics into full songs is here—meet YuE! Unlike other tools that only create short clips, YuE can make entire songs (up to 5 minutes) with vocals, melody, and instruments all working together. Letsss go!

m-a-p/YuE-s1-7B-anneal-en-cot
lewtun 
posted an update about 1 month ago
view post
Post
10168
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!

🧪 Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.

🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.

🔥 Step 3: show we can go from base model -> SFT -> RL via multi-stage training.

Follow along: https://github.com/huggingface/open-r1
·
chansung 
posted an update about 1 month ago
view post
Post
1729
New look for AI powered paper reviews from the list by Hugging Face Daily Papers ( managed by the @akhaliq )

Bookmark the webpage along, check comprehensive reviews by Google DeepMind Gemini 1.5, and listen to audio podcast made by the same tech used in NotebookLM.

Link: https://deep-diver.github.io/ai-paper-reviewer/

This is not an official service by Hugging Face. It is just a service developed by an individual developer using his own money :)