Model description
This is a HistGradientBoostingClassifier model trained on breast cancer dataset. It's trained with Halving Grid Search Cross Validation, with parameter grids on max_leaf_nodes and max_depth.
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameters | Value |
---|---|
aggressive_elimination | False |
cv | 5 |
error_score | nan |
estimator__categorical_features | None |
estimator__early_stopping | auto |
estimator__l2_regularization | 0.0 |
estimator__learning_rate | 0.1 |
estimator__loss | log_loss |
estimator__max_bins | 255 |
estimator__max_depth | None |
estimator__max_iter | 100 |
estimator__max_leaf_nodes | 31 |
estimator__min_samples_leaf | 20 |
estimator__monotonic_cst | None |
estimator__n_iter_no_change | 10 |
estimator__random_state | None |
estimator__scoring | loss |
estimator__tol | 1e-07 |
estimator__validation_fraction | 0.1 |
estimator__verbose | 0 |
estimator__warm_start | False |
estimator | HistGradientBoostingClassifier() |
factor | 3 |
max_resources | auto |
min_resources | exhaust |
n_jobs | -1 |
param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} |
random_state | 42 |
refit | True |
resource | n_samples |
return_train_score | True |
scoring | None |
verbose | 0 |
Model Plot
The model plot is below.
HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={'max_depth': [2, 5, 10],'max_leaf_nodes': [5, 10, 15]},random_state=42)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={'max_depth': [2, 5, 10],'max_leaf_nodes': [5, 10, 15]},random_state=42)
HistGradientBoostingClassifier()
HistGradientBoostingClassifier()
How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
import pickle
with open(dtc_pkl_filename, 'rb') as file:
clf = pickle.load(file)
Model Card Authors
This model card is written by following authors:
skops_user
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
- Downloads last month
- 0