pakawadeep's picture
Training in progress epoch 29
77700e3
metadata
license: apache-2.0
base_model: google/mt5-base
tags:
  - generated_from_keras_callback
model-index:
  - name: pakawadeep/mt5-base-finetuned-ctfl-augmented
    results: []

pakawadeep/mt5-base-finetuned-ctfl-augmented

This model is a fine-tuned version of google/mt5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.4325
  • Validation Loss: 0.7749
  • Train Rouge1: 8.6103
  • Train Rouge2: 0.7921
  • Train Rougel: 8.6987
  • Train Rougelsum: 8.6987
  • Train Gen Len: 11.8713
  • Epoch: 29

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Rouge1 Train Rouge2 Train Rougel Train Rougelsum Train Gen Len Epoch
6.9468 2.5770 1.3751 0.2405 1.3339 1.3916 8.5050 0
3.5520 2.0970 5.5693 0.8251 5.5487 5.6106 10.8564 1
2.7376 2.2001 5.1568 1.3201 4.9505 5.1155 10.0099 2
2.4757 1.8936 6.2706 1.1881 6.2235 6.3885 10.3614 3
2.1064 1.5432 7.4045 1.6832 7.2136 7.4116 11.1040 4
1.8167 1.3532 8.4866 2.1782 8.4158 8.6987 11.5644 5
1.6032 1.1789 8.6987 2.1782 8.4866 8.6987 11.8267 6
1.4351 1.1083 8.6987 2.1782 8.4866 8.6987 11.9059 7
1.3021 1.0607 8.9109 2.3762 8.8048 8.9816 11.9604 8
1.2060 1.0120 8.9109 2.3762 8.8048 8.9816 11.9455 9
1.1182 0.9736 8.6987 1.8812 8.6987 8.7694 11.9703 10
1.0551 0.9458 8.6987 1.8812 8.6987 8.7694 11.9406 11
0.9862 0.9170 8.5926 1.3861 8.5337 8.6516 11.9455 12
0.9324 0.8727 8.5101 1.3861 8.4807 8.5691 11.9208 13
0.8809 0.8625 8.7459 1.8812 8.6987 8.8166 11.9257 14
0.8334 0.8322 8.4512 1.3861 8.4158 8.4866 11.9307 15
0.7864 0.8009 7.9562 0.7921 7.7793 7.9915 11.9010 16
0.7542 0.8049 8.2744 0.7921 8.2390 8.3215 11.8465 17
0.7157 0.7914 8.4512 1.3861 8.4158 8.4866 11.9356 18
0.6806 0.7787 8.2744 0.7921 8.2390 8.3215 11.8812 19
0.6492 0.7813 8.2744 0.7921 8.2390 8.3215 11.8861 20
0.6222 0.7654 8.2744 0.7921 8.2390 8.3215 11.8713 21
0.5934 0.7588 8.4512 1.3861 8.4158 8.4866 11.8960 22
0.5648 0.7596 8.2744 0.7921 8.2390 8.3215 11.8861 23
0.5423 0.7755 8.2744 0.7921 8.2390 8.3215 11.8762 24
0.5180 0.7640 8.2744 0.7921 8.2390 8.3215 11.8861 25
0.4931 0.7582 8.2744 0.7921 8.2390 8.3215 11.8416 26
0.4738 0.7671 8.2744 0.7921 8.2390 8.3215 11.8614 27
0.4544 0.7644 8.2744 0.7921 8.2390 8.3215 11.8465 28
0.4325 0.7749 8.6103 0.7921 8.6987 8.6987 11.8713 29

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2