TW3-JRGL-v2 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
e3236c9 verified
|
raw
history blame
4.56 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- MTSAIR/MultiVerse_70B
- davidkim205/Rhea-72b-v0.5
model-index:
- name: TW3-JRGL-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.16
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=paloalma/TW3-JRGL-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 45.61
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=paloalma/TW3-JRGL-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 15.86
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=paloalma/TW3-JRGL-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.54
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=paloalma/TW3-JRGL-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.7
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=paloalma/TW3-JRGL-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.87
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=paloalma/TW3-JRGL-v2
name: Open LLM Leaderboard
---
# TW3-JRGL-v2
## This model has been produced by :
- [Louis Garcia](https://www.linkedin.com/in/louis-garcia-profil/), engineering student at [French Engineering School ECE](https://www.ece.fr/en/)
- [Matthieu Jollard](https://www.linkedin.com/in/matthieu-jollard/), engineering student at [French Engineering School ECE](https://www.ece.fr/en/)
## Under the supervision of :
- [Andre-Louis Rochet](https://www.linkedin.com/in/andrelouisrochet/), Lecturer at ECE & Co-Founder of [TW3 Partners](https://tw3partners.fr/)
- [Paul Lemaistre](https://www.linkedin.com/in/paul-lemaistre/), CTO of [TW3 Partners](https://tw3partners.fr/)
## With the contribution of :
- ECE engineering school as sponsor and financial contributor
- RunPod as financial contributor
## About ECE
>_**ECE**, a multi-program, multi-campus, and multi-sector engineering school specializing in digital engineering,
> trains engineers and technology experts for the 21st century, capable of meeting the challenges of the dual digital and sustainable development revolutions.
>[French Engineering School ECE](https://www.ece.fr/en/)_
# TW3-JRGL-v2
Le_Triomphant-ECE-TW3 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [davidkim205/Rhea-72b-v0.5](https://huggingface.co/davidkim205/Rhea-72b-v0.5)
* [MTSAIR/MultiVerse_70B](https://huggingface.co/MTSAIR/MultiVerse_70B)
## 🧩 Configuration
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_paloalma__TW3-JRGL-v2)
| Metric |Value|
|-------------------|----:|
|Avg. |32.12|
|IFEval (0-Shot) |53.16|
|BBH (3-Shot) |45.61|
|MATH Lvl 5 (4-Shot)|15.86|
|GPQA (0-shot) |14.54|
|MuSR (0-shot) |20.70|
|MMLU-PRO (5-shot) |42.87|