|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model-index: |
|
- name: hc-mistral-alpaca |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.3.0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
lora_fan_in_fan_out: false |
|
data_seed: 49 |
|
seed: 49 |
|
|
|
datasets: |
|
- path: _synth_data/alpaca_synth_queries_healed.jsonl |
|
type: sharegpt |
|
conversation: alpaca |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./qlora-alpaca-out |
|
hub_model_id: hamel/hc-mistral-alpaca |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 896 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: hc-axolotl-mistral |
|
wandb_entity: hamelsmu |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 16 |
|
eval_batch_size: 16 |
|
num_epochs: 3 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
max_grad_norm: 1.0 |
|
adam_beta2: 0.95 |
|
adam_epsilon: 0.00001 |
|
save_total_limit: 12 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 20 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
saves_per_epoch: 6 |
|
debug: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
save_safetensors: true |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# hc-mistral-alpaca |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0283 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 49 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.167 | 0.0 | 1 | 1.1641 | |
|
| 0.0518 | 0.25 | 450 | 0.0565 | |
|
| 0.0386 | 0.5 | 900 | 0.0414 | |
|
| 0.0314 | 0.75 | 1350 | 0.0357 | |
|
| 0.0278 | 1.0 | 1800 | 0.0326 | |
|
| 0.0217 | 1.25 | 2250 | 0.0311 | |
|
| 0.0206 | 1.5 | 2700 | 0.0296 | |
|
| 0.0175 | 1.75 | 3150 | 0.0285 | |
|
| 0.0271 | 2.0 | 3600 | 0.0274 | |
|
| 0.0146 | 2.25 | 4050 | 0.0288 | |
|
| 0.0126 | 2.5 | 4500 | 0.0284 | |
|
| 0.0168 | 2.75 | 4950 | 0.0284 | |
|
| 0.0118 | 3.0 | 5400 | 0.0283 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.0 |
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |