|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model-index: |
|
- name: hc-mistral-alpaca |
|
results: [] |
|
--- |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
|
|
### Model Description |
|
|
|
A model that can generate [Honeycomb Queries](https://www.honeycomb.io/blog/introducing-query-assistant). |
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). |
|
|
|
_fine-tuned by [Hamel Husain](https://hamel.dev)_ |
|
|
|
# Usage |
|
|
|
You can use this model with the following code: |
|
|
|
First, download the model |
|
|
|
```python |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
model_id='parlance-labs/hc-mistral-alpaca' |
|
model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
``` |
|
|
|
Then, construct the prompt template like so: |
|
|
|
```python |
|
def prompt(nlq, cols): |
|
return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query. |
|
|
|
### Instruction: |
|
|
|
NLQ: "{nlq}" |
|
|
|
Columns: {cols} |
|
|
|
### Response: |
|
""" |
|
|
|
def prompt_tok(nlq, cols): |
|
_p = prompt(nlq, cols) |
|
input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() |
|
out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, |
|
do_sample=False) |
|
return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), |
|
skip_special_tokens=True)[0][len(_p):] |
|
``` |
|
|
|
Finally, you can get predictions like this: |
|
|
|
```python |
|
# model inputs |
|
nlq = "Exception count by exception and caller" |
|
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] |
|
|
|
# print prediction |
|
out = prompt_tok(nlq, cols) |
|
print(nlq, '\n', out) |
|
``` |
|
|
|
This will give you a prediction that looks like this: |
|
|
|
```md |
|
"{'breakdowns': ['exception.message', 'exception.type'], 'calculations': [{'op': 'COUNT'}], 'filters': [{'column': 'exception.message', 'op': 'exists'}, {'column': 'exception.type', 'op': 'exists'}], 'orders': [{'op': 'COUNT', 'order': 'descending'}], 'time_range': 7200}" |
|
``` |
|
|
|
Alternatively, you can play with this model on Replicate: [hamelsmu/honeycomb-2](https://replicate.com/hamelsmu/honeycomb-2) |
|
|
|
# Hosted Inference |
|
|
|
This model is hosted on Replicate: (hamelsmu/honeycomb-2)[https://replicate.com/hamelsmu/honeycomb-2], using [this config](https://github.com/hamelsmu/replicate-examples/tree/master/mistral-transformers-2). |
|
|
|
# Training Procedure |
|
|
|
Used [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/tree/main), see [this config](configs/axolotl_config.yml). See this [wandb run](https://wandb.ai/hamelsmu/hc-axolotl-mistral/runs/7dq9l9vu/overview) to see training metrics. |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.0 |
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |