metadata
language:
- ja
license: cc-by-sa-3.0
library_name: transformers
tags:
- fastText
pipeline_tag: zero-shot-classification
widget:
- text: 海賊王におれはなる
candidate_labels: 海, 山, 陸
multi_class: true
example_title: ワンピース
fasttext-classification
This model is experimental.
fastText word vector base classification
Usage
Google Colaboratory Example
! apt install aptitude swig > /dev/null
! aptitude install mecab libmecab-dev mecab-ipadic-utf8 git make curl xz-utils file -y > /dev/null
! pip install transformers torch mecab-python3 torchtyping > /dev/null
! ln -s /etc/mecabrc /usr/local/etc/mecabrc
from transformers import pipeline
p = pipeline("zero-shot-classification", "paulhindemith/fasttext-classification", revision="2022.11.13", trust_remote_code=True)
p("海賊王におれはなる", candidate_labels=["海","山","陸"], hypothesis_template="{}", multi_label=True)
License
This model utilizes the folllowing pretrained vectors.
Name: fastText
Credit: https://fasttext.cc/
License: Creative Commons Attribution-Share-Alike License 3.0
Link: https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.ja.vec