File size: 7,903 Bytes
5c5a02d 1f5aa72 afc67e5 1f5aa72 afc67e5 0018e62 db8df50 afc67e5 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 2b6e2f8 0018e62 afc67e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
license: apache-2.0
base_model:
- Qwen/Qwen2-VL-2B-Instruct
---
# Requirements
This is compatible with any onnx runtime.
# Running this model
**Javascript**
See https://huggingface.co/spaces/pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16 for a demo.
**Python**
```
import os
import sys
import time
import torch
import numpy as np
import requests
import onnxruntime as ort
from PIL import Image
from io import BytesIO
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
# Constants
DEBUG = True
PRINT = print
# Try importing config, set defaults if not found
try:
from export_config import (
INPUT_IMAGE_SIZE,
IMAGE_RESIZE,
MAX_SEQ_LENGTH,
HEIGHT_FACTOR,
WIDTH_FACTOR
)
except:
INPUT_IMAGE_SIZE = [960, 960]
HEIGHT_FACTOR = 10
WIDTH_FACTOR = 10
IMAGE_RESIZE = [HEIGHT_FACTOR * 28, WIDTH_FACTOR * 28]
MAX_SEQ_LENGTH = 1024
# Command line arguments
model_path = sys.argv[1]
onnx_path = sys.argv[2]
# ONNX model paths
model_paths = {
'A': os.path.join(onnx_path, 'QwenVL_A_q4f16.onnx'),
'B': os.path.join(onnx_path, 'QwenVL_B_q4f16.onnx'),
'C': os.path.join(onnx_path, 'QwenVL_C_q4f16.onnx'),
'D': os.path.join(onnx_path, 'QwenVL_D_q4f16.onnx'),
'E': os.path.join(onnx_path, 'QwenVL_E_q4f16.onnx')
}
PRINT('\n[PATHS] ONNX model paths:')
for key, path in model_paths.items():
PRINT(f" Model {key}: {path}")
# Test image and prompt
TEST_IMAGE_URL = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg'
TEST_PROMPT = 'Describe this image.'
# Initialize model and tokenizer
with torch.inference_mode():
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.float32,
device_map='mps',
low_cpu_mem_usage=DEBUG
)
max_length = MAX_SEQ_LENGTH
num_attention_heads = model.config.num_attention_heads
num_key_value_heads = model.config.num_key_value_heads
head_dim = model.config.hidden_size // num_attention_heads
num_layers = model.config.num_hidden_layers
hidden_size = model.config.hidden_size
MAX_ITERATIONS = 12
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=DEBUG)
# ONNX session options
session_options = ort.SessionOptions()
session_options.log_severity_level = 3
session_options.inter_op_num_threads = 0
session_options.intra_op_num_threads = 0
session_options.enable_cpu_mem_arena = DEBUG
session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
session_options.add_session_config_entry('session.intra_op.allow_spinning', '1')
session_options.add_session_config_entry('session.inter_op.allow_spinning', '1')
# Initialize ONNX sessions
sessions = {
'A': ort.InferenceSession(model_paths['A'], sess_options=session_options),
'B': ort.InferenceSession(model_paths['B'], sess_options=session_options),
'C': ort.InferenceSession(model_paths['C'], sess_options=session_options),
'D': ort.InferenceSession(model_paths['D'], sess_options=session_options),
'E': ort.InferenceSession(model_paths['E'], sess_options=session_options)
}
# Get input/output names for each session
inputs = {
'A': {
'input': sessions['A'].get_inputs()[0].name,
'output': sessions['A'].get_outputs()[0].name
},
'B': {
'input_ids': sessions['B'].get_inputs()[0].name,
'input_lengths': sessions['B'].get_inputs()[1].name,
'output': sessions['B'].get_outputs()[0].name
},
'C': {
'input': sessions['C'].get_inputs()[0].name,
'output': sessions['C'].get_outputs()[0].name
},
'D': {
'names': [inp.name for inp in sessions['D'].get_inputs()],
'outputs': [out.name for out in sessions['D'].get_outputs()]
},
'E': {
'names': [inp.name for inp in sessions['E'].get_inputs()],
'outputs': [out.name for out in sessions['E'].get_outputs()]
}
}
# Process image
response = requests.get(TEST_IMAGE_URL)
image = Image.open(BytesIO(response.content))
image = image.resize((INPUT_IMAGE_SIZE[1], INPUT_IMAGE_SIZE[0]))
if image.mode != 'RGB':
image = image.convert('RGB')
image_array = np.transpose(np.array(image).astype(np.float32), (2, 0, 1))
image_array = np.expand_dims(image_array, axis=0) / 255.
use_images = DEBUG
prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{TEST_PROMPT}<|im_end|>\n<|im_start|>assistant\n"
eos_token_id = np.array([5], dtype=np.int64)
total_ids = WIDTH_FACTOR * HEIGHT_FACTOR
# Initialize tensors
input_ids = tokenizer(prompt, return_tensors='pt')['input_ids']
input_lengths = np.array([input_ids.shape[1]], dtype=np.int64)
tokens = np.zeros(max_length, dtype=np.int32)
tokens[:input_lengths[0]] = input_ids[0, :]
position = np.zeros(1, dtype=np.int64)
# Initialize cache tensors
key_cache = np.zeros((num_layers, num_key_value_heads, max_length, head_dim), dtype=np.float16)
value_cache = key_cache.copy()
logits_mask = np.array([-65504.], dtype=np.float16)
position_mask = np.array([.0], dtype=np.float16)
max_total_tokens = 1 - total_ids + WIDTH_FACTOR
batch_size = np.array(0, dtype=np.int32)
# Process initial inputs
hidden_states = sessions['B'].run([inputs['B']['output']],
{inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths})[0]
batch_size, = sessions['C'].run([inputs['C']['output']], {inputs['C']['input']: batch_size})
if use_images:
image_features = sessions['A'].run([inputs['A']['output']], {inputs['A']['input']: image_array})[0]
input_lengths += total_ids
remaining_tokens = np.array(max_length - input_lengths[0] - total_ids, dtype=np.int32)
tokens_to_stop = np.array(input_lengths[0] - eos_token_id[0], dtype=np.int32)
hidden_states, batch_size = sessions['D'].run(
[inputs['D']['outputs'][0], inputs['D']['outputs'][1]],
{
inputs['D']['names'][0]: hidden_states,
inputs['D']['names'][1]: image_features,
inputs['D']['names'][2]: input_lengths,
inputs['D']['names'][3]: tokens_to_stop,
inputs['D']['names'][4]: remaining_tokens
}
)
start_time = time.time()
iterations = 0
while (iterations < MAX_ITERATIONS) & (position < max_length):
token, key_cache, value_cache = sessions['E'].run(
[inputs['E']['outputs'][0], inputs['E']['outputs'][1], inputs['E']['outputs'][2]],
{
inputs['E']['names'][0]: hidden_states,
inputs['E']['names'][1]: logits_mask,
inputs['E']['names'][2]: key_cache,
inputs['E']['names'][3]: value_cache,
inputs['E']['names'][4]: position,
inputs['E']['names'][5]: input_lengths,
inputs['E']['names'][6]: batch_size,
inputs['E']['names'][7]: position_mask
}
)
if (token == 151643) | (token == 151645):
break
else:
iterations += 1
if iterations < 2:
position += input_lengths[0]
input_lengths[0] = 1
logits_mask = np.array([.0], dtype=np.float16)
if use_images:
position_mask = np.array(max_total_tokens + input_lengths[0], dtype=np.float16)
else:
position_mask = np.array(position[0] + 1, dtype=np.float16)
else:
position += 1
position_mask += 1
tokens[0] = token
hidden_states = sessions['B'].run(
[inputs['B']['output']],
{inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths}
)[0]
decoded_token = tokenizer.decode(token)
PRINT(f"Decoded token: {decoded_token}")
PRINT(decoded_token, end='', flush=DEBUG)
total_time = time.time() - start_time
```
# Technical Information:
- [EXPORT.md](EXPORT.md) |