MEDNER.DE: Medicinal Product Entity Recognition in German-Specific Contexts
Released in December 2024, this is a German BERT language model further pretrained on deepset/gbert-base
using a pharmacovigilance-related case summary corpus. The model has been fine-tuned for Named Entity Recognition (NER) tasks on an automatically annotated dataset to recognize medicinal products such as medications and vaccines.
In our paper, we outline the steps taken to train this model and demonstrate its superior performance compared to previous approaches
Overview
- Paper: [https://...
- Architecture: MLM_based BERT Base
- Language: German
- Supported Labels: Medicinal Product
Model Name: MEDNER.DE
How to Use
Use a pipeline as a high-level helper
from transformers import pipeline
# Load the NER pipeline
model = pipeline("ner", model="pei-germany/MEDNER-de-fp-gbert", aggregation_strategy="none")
# Input text
text = "Der Patient wurde mit AstraZeneca geimpft und nahm anschließend Ibuprofen, um das Fieber zu senken."
# Get raw predictions and merge subwords
merged_predictions = []
current = None
for pred in model(text):
if pred['word'].startswith("##"):
if current:
current['word'] += pred['word'][2:]
current['end'] = pred['end']
current['score'] = (current['score'] + pred['score']) / 2
else:
if current:
merged_predictions.append(current)
current = pred.copy()
if current:
merged_predictions.append(current)
# Filter by confidence threshold and print
threshold = 0.5
filtered_predictions = [p for p in merged_predictions if p['score'] >= threshold]
for p in filtered_predictions:
print(f"Entity: {p['entity']}, Word: {p['word']}, Score: {p['score']:.2f}, Start: {p['start']}, End: {p['end']}")
Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("pei-germany/MEDNER-de-fp-gbert")
model = AutoModelForTokenClassification.from_pretrained("pei-germany/MEDNER-de-fp-gbert")
text = "Der Patient wurde mit AstraZeneca geimpft und nahm anschließend Ibuprofen, um das Fieber zu senken."
# Tokenize and get predictions
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
# Decode tokens and predictions
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
predictions = torch.argmax(outputs.logits, dim=2)[0].tolist()
labels = [model.config.id2label[pred] for pred in predictions]
# Process and merge subwords
entities = []
current_word = ""
current_entity = None
for token, label in zip(tokens, labels):
token = token.replace("##", "") # Remove subword markers
if label.startswith("B-"): # Beginning of a new entity
if current_entity and current_entity == label[2:]: # Merge consecutive B- labels
current_word += token
else: # Save the previous entity and start a new one
if current_word:
entities.append({"entity": current_entity, "word": current_word})
current_word = token
current_entity = label[2:]
elif label.startswith("I-") and current_entity == label[2:]: # Continuation of the same entity
current_word += token
else: # Outside any entity
if current_word: # Save the previous entity
entities.append({"entity": current_entity, "word": current_word})
current_word = ""
current_entity = None
if current_word: # Append the last entity
entities.append({"entity": current_entity, "word": current_word})
# Print results
for entity in entities:
print(f"Entity: {entity['entity']}, Word: {entity['word']}")
Authors
Farnaz Zeidi, Manuela Messelhäußer, Roman Christof, Xing David Wang, Ulf Leser, Dirk Mentzer, Renate König, Liam Childs.
License
This model is shared under the GNU Affero General Public License v3.0 License.
- Downloads last month
- 46
Model tree for pei-germany/MEDNER-de-fp-gbert
Base model
deepset/gbert-base