farnazzeidi commited on
Commit
5d1c512
·
verified ·
1 Parent(s): 42804cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -6
README.md CHANGED
@@ -32,15 +32,36 @@ In our paper, we outline the steps taken to train this model and demonstrate its
32
  ```python
33
  from transformers import pipeline
34
 
35
- # Load the pipeline
36
- model = pipeline("ner", model="pei-germany/MEDNER-de-fp-gbert", aggregation_strategy='simple')
37
 
38
  # Input text
39
- text="Der Patient bekam den COVID-Impfstoff und nahm danach Aspirin."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- # Get predictions
42
- predictions = model(text)
43
- print(predictions)
44
  ```
45
 
46
 
 
32
  ```python
33
  from transformers import pipeline
34
 
35
+ # Load the NER pipeline
36
+ model = pipeline("ner", model="pei-germany/MEDNER-de-fp-gbert", aggregation_strategy="none")
37
 
38
  # Input text
39
+ text = "Der Patient wurde mit AstraZeneca geimpft und nahm anschließend Ibuprofen, um das Fieber zu senken."
40
+
41
+ # Get raw predictions and merge subwords
42
+ merged_predictions = []
43
+ current = None
44
+
45
+ for pred in model(text):
46
+ if pred['word'].startswith("##"):
47
+ if current:
48
+ current['word'] += pred['word'][2:]
49
+ current['end'] = pred['end']
50
+ current['score'] = (current['score'] + pred['score']) / 2
51
+ else:
52
+ if current:
53
+ merged_predictions.append(current)
54
+ current = pred.copy()
55
+
56
+ if current:
57
+ merged_predictions.append(current)
58
+
59
+ # Filter by confidence threshold and print
60
+ threshold = 0.5
61
+ filtered_predictions = [p for p in merged_predictions if p['score'] >= threshold]
62
+ for p in filtered_predictions:
63
+ print(f"Entity: {p['entity']}, Word: {p['word']}, Score: {p['score']:.2f}, Start: {p['start']}, End: {p['end']}")
64
 
 
 
 
65
  ```
66
 
67