TrOCR Small (Finetuned on French)

This model is a fine-tuned version of microsoft/trocr-small-handwritten on a custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1007
  • Model Preparation Time: 0.0057
  • Cer: 0.0138
  • Wer: 0.0455
  • Ratio: 98.3979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

See https://github.com/personalizedrefrigerator/trocr_finetuning/tree/main/trocr

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Cer Wer Ratio
0.1386 0.0333 400 0.1543 0.0057 0.0190 0.0819 98.6922
0.1298 0.0667 800 0.1300 0.0057 0.0130 0.0526 98.9649
0.1171 0.1 1200 0.1622 0.0057 0.0200 0.0760 98.3437
0.1035 0.1333 1600 0.1538 0.0057 0.0190 0.0760 98.6841
0.1186 0.1667 2000 0.1605 0.0057 0.0170 0.0760 98.9547
0.1285 0.2 2400 0.1675 0.0057 0.0190 0.0643 98.5663
0.1043 0.2333 2800 0.1511 0.0057 0.0220 0.0702 98.4283
0.1294 0.2667 3200 0.1647 0.0057 0.0150 0.0526 98.9361
0.0954 0.3 3600 0.1532 0.0057 0.0160 0.0526 98.7555
0.111 0.3333 4000 0.1577 0.0057 0.0210 0.0643 98.1890
0.114 0.3667 4400 0.1378 0.0057 0.0160 0.0585 98.6565
0.1183 0.4 4800 0.1163 0.0057 0.0070 0.0351 99.3075
0.1277 0.4333 5200 0.1571 0.0057 0.0160 0.0760 98.8328
0.1219 0.4667 5600 0.1571 0.0057 0.0150 0.0526 98.7910
0.1101 0.5 6000 0.1245 0.0057 0.0130 0.0526 99.0524
0.1069 0.5333 6400 0.1470 0.0057 0.0130 0.0585 99.0389
0.1126 0.5667 6800 0.1302 0.0057 0.0140 0.0526 98.9437
0.0837 1.0137 7200 0.1323 0.0057 0.0200 0.0702 98.4624
0.0809 1.047 7600 0.1180 0.0057 0.0100 0.0409 99.4630
0.0889 1.0803 8000 0.1241 0.0057 0.0180 0.0702 98.7486
0.0711 1.1137 8400 0.1174 0.0057 0.0150 0.0585 98.8769
0.0736 1.147 8800 0.1166 0.0057 0.0120 0.0468 99.0708
0.0786 1.1803 9200 0.1080 0.0057 0.0080 0.0351 99.5225
0.0686 1.2137 9600 0.1037 0.0057 0.0070 0.0292 99.5887
0.0738 1.2470 10000 0.1127 0.0057 0.0140 0.0468 99.0132
0.07 1.2803 10400 0.1051 0.0057 0.0120 0.0409 99.0954
0.0697 1.3137 10800 0.1003 0.0057 0.0090 0.0292 99.2171
0.0686 1.347 11200 0.1038 0.0057 0.0120 0.0351 98.9317
0.0763 1.3803 11600 0.1028 0.0057 0.0120 0.0351 98.9317
0.0717 1.4137 12000 0.1018 0.0057 0.0120 0.0351 98.9317

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
57
Safetensors
Model size
61.6M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for personalizedrefrigerator/trocr-small-fr

Finetuned
(2)
this model