|
--- |
|
tags: |
|
- Pong-v4 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- custom-implementation |
|
library_name: cleanrl |
|
model-index: |
|
- name: DQN |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: Pong-v4 |
|
type: Pong-v4 |
|
metrics: |
|
- type: mean_reward |
|
value: 4.50 +/- 3.93 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# (CleanRL) **DQN** Agent Playing **Pong-v4** |
|
|
|
This is a trained model of a DQN agent playing Pong-v4. |
|
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be |
|
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100_pt0.1.py). |
|
|
|
## Get Started |
|
|
|
To use this model, please install the `cleanrl` package with the following command: |
|
|
|
``` |
|
pip install "cleanrl[DQPN_p100_pt0.1]" |
|
python -m cleanrl_utils.enjoy --exp-name DQPN_p100_pt0.1 --env-id Pong-v4 |
|
``` |
|
|
|
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. |
|
|
|
|
|
## Command to reproduce the training |
|
|
|
```bash |
|
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/dqpn_atari.py |
|
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/pyproject.toml |
|
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/poetry.lock |
|
poetry install --all-extras |
|
python dqpn_atari.py --exp-name DQPN_p100_pt0.1 --start-policy-f 100000 --end-policy-f 100000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 |
|
``` |
|
|
|
# Hyperparameters |
|
```python |
|
{'batch_size': 32, |
|
'buffer_size': 1000000, |
|
'capture_video': False, |
|
'cuda': True, |
|
'end_e': 0.01, |
|
'end_policy_f': 100000, |
|
'env_id': 'Pong-v4', |
|
'evaluation_fraction': 1.0, |
|
'exp_name': 'DQPN_p100_pt0.1', |
|
'exploration_fraction': 0.1, |
|
'gamma': 0.99, |
|
'hf_entity': 'pfunk', |
|
'learning_rate': 0.0001, |
|
'learning_starts': 80000, |
|
'policy_tau': 0.1, |
|
'save_model': True, |
|
'seed': 1, |
|
'start_e': 1, |
|
'start_policy_f': 100000, |
|
'target_network_frequency': 1000, |
|
'target_tau': 1.0, |
|
'torch_deterministic': True, |
|
'total_timesteps': 10000000, |
|
'track': True, |
|
'train_frequency': 4, |
|
'upload_model': True, |
|
'wandb_entity': 'pfunk', |
|
'wandb_project_name': 'dqpn'} |
|
``` |
|
|