Create handler.py
#1
by
philipp-zettl
- opened
- handler.py +24 -0
- requirements.txt +2 -0
handler.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from optimum.pipeline import pipeline
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from optimum import ORTModelForSeq2SeqLM
|
5 |
+
|
6 |
+
|
7 |
+
class EndpointHandler():
|
8 |
+
def __init__(self, path=""):
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
+
model = ORTModelForSeq2SeqLM.from_pretrained(path)
|
11 |
+
self.pipeline = pipeline("summarization",model=model, tokenizer=tokenizer)
|
12 |
+
|
13 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
14 |
+
"""
|
15 |
+
data args:
|
16 |
+
inputs (:obj: `str`)
|
17 |
+
Return:
|
18 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
19 |
+
"""
|
20 |
+
# get inputs
|
21 |
+
inputs = data.pop("inputs",data)
|
22 |
+
|
23 |
+
# run normal prediction
|
24 |
+
return self.pipeline(inputs)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
optimum
|