fast / processing_action_tokenizer.py
KarlP's picture
Upload processor
fef8e13 verified
raw
history blame
6.15 kB
import logging
from typing import ClassVar
import numpy as np
from scipy.fft import dct
from scipy.fft import idct
from tokenizers import ByteLevelBPETokenizer
from tokenizers.trainers import BpeTrainer
from transformers import PreTrainedTokenizerFast
from transformers.processing_utils import ProcessorMixin
class UniversalActionProcessor(ProcessorMixin):
attributes: ClassVar[list[str]] = ["bpe_tokenizer"]
bpe_tokenizer_class: str = "AutoTokenizer"
def __init__(
self,
bpe_tokenizer: PreTrainedTokenizerFast,
scale: float = 10,
vocab_size: int = 1024,
min_token: int = 0,
*,
action_dim: int | None = None,
time_horizon: int | None = None,
):
self.scale = scale
self.vocab_size = vocab_size
self.min_token = min_token
# Action horizon and dimension needed during decoding. These can be specified
# in three ways (in order of priority):
# 1. passed in as kwargs to decode()
# 2. in the constructor
# 3. cached from the last time decode() was called
self.time_horizon = time_horizon
self.action_dim = action_dim
self.called_time_horizon = time_horizon
self.called_action_dim = action_dim
super().__init__(bpe_tokenizer)
def __call__(self, action_chunk: np.array) -> np.array:
assert action_chunk.ndim <= 3, "Only 3 dimensions supported: [batch, timesteps, action_dim]"
if action_chunk.ndim == 2:
action_chunk = action_chunk[None, ...]
# Cache the time horizon and action dimension for decoding
self.called_time_horizon = action_chunk.shape[-2]
self.called_action_dim = action_chunk.shape[-1]
dct_coeff = dct(action_chunk, axis=1, norm="ortho")
dct_coeff = np.around(dct_coeff * self.scale)
tokens = []
for elem in dct_coeff:
token_str = "".join(map(chr, np.maximum(elem.flatten() - self.min_token, 0).astype(int)))
tokens.append(self.bpe_tokenizer(token_str)["input_ids"])
return tokens
def decode(
self,
tokens: list[list[int]],
*,
time_horizon: int | None = None,
action_dim: int | None = None,
) -> np.array:
self.time_horizon = time_horizon or self.time_horizon or self.called_time_horizon
self.action_dim = action_dim or self.action_dim or self.called_action_dim
# Cache the time horizon and action dimension for the next call
self.called_time_horizon = self.time_horizon
self.called_action_dim = self.action_dim
assert (
self.time_horizon is not None and self.action_dim is not None
), "Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim."
decoded_actions = []
for token in tokens:
try:
decoded_tokens = self.bpe_tokenizer.decode(token)
decoded_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.min_token
decoded_dct_coeff = decoded_dct_coeff.reshape(-1, self.action_dim)
assert (
decoded_dct_coeff.shape
== (
self.time_horizon,
self.action_dim,
)
), f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})"
except Exception as e:
print(f"Error decoding tokens: {e}")
print(f"Tokens: {token}")
decoded_dct_coeff = np.zeros((self.time_horizon, self.action_dim))
decoded_actions.append(idct(decoded_dct_coeff / self.scale, axis=0, norm="ortho"))
return np.stack(decoded_actions)
@classmethod
def fit(
cls,
action_data: list[np.array],
scale: float = 10,
vocab_size: int = 1024,
*,
time_horizon: int | None = None,
action_dim: int | None = None,
) -> "UniversalActionProcessor":
# Run DCT over all inputs
dct_tokens = [dct(a, axis=0, norm="ortho").flatten() for a in action_data]
# Quantize and find min token
max_token = int(np.around(np.concatenate(dct_tokens) * scale).max())
min_token = int(np.around(np.concatenate(dct_tokens) * scale).min())
min_vocab_size = max_token - min_token
assert (
min_vocab_size <= vocab_size
), f"Vocab size {vocab_size} is too small for the range of tokens {min_vocab_size}"
if min_vocab_size + 100 > vocab_size:
logging.warning(
f"Initial alphabet size {min_vocab_size} is almost as large as the vocab"
f"size {vocab_size}, consider increasing vocab size"
)
# Make token iterator for BPE training
def _token_iter():
for tokens in dct_tokens:
rounded_tokens = np.around(tokens * scale) - min_token
rounded_tokens = rounded_tokens.astype(int)
string = "".join(map(chr, rounded_tokens))
yield string
# Train BPE tokenizer
bpe = ByteLevelBPETokenizer()
# Set up the entire range of possible tokens as the initial alphabet
alphabet = [chr(i) for i in range(max_token - min_token + 1)]
trainer = BpeTrainer(
vocab_size=vocab_size,
min_frequency=2,
show_progress=True,
special_tokens=[],
initial_alphabet=alphabet,
max_token_length=10000,
)
# Train the inner tokenizer (don't use ByteLevelBPETokenizer.train_from_iterator()
# because it doesn't support custom alphabets)
bpe._tokenizer.train_from_iterator(_token_iter(), trainer=trainer)
return cls(
PreTrainedTokenizerFast(tokenizer_object=bpe, clean_up_tokenization_spaces=False),
scale=scale,
vocab_size=vocab_size,
min_token=min_token,
time_horizon=time_horizon,
action_dim=action_dim,
)