pijarcandra22/CitraNLP
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0003
- Validation Loss: 0.0000
- Epoch: 538
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
3.1520 | 2.2150 | 0 |
2.3513 | 1.6796 | 1 |
1.9192 | 1.3504 | 2 |
1.6169 | 1.1077 | 3 |
1.4101 | 0.9114 | 4 |
1.2316 | 0.7517 | 5 |
1.0950 | 0.6349 | 6 |
0.9678 | 0.5294 | 7 |
0.8521 | 0.4460 | 8 |
0.7654 | 0.3729 | 9 |
0.6812 | 0.3165 | 10 |
0.6063 | 0.2677 | 11 |
0.5479 | 0.2234 | 12 |
0.4967 | 0.1922 | 13 |
0.4496 | 0.1681 | 14 |
0.4149 | 0.1439 | 15 |
0.3829 | 0.1280 | 16 |
0.3485 | 0.1158 | 17 |
0.3271 | 0.1004 | 18 |
0.2971 | 0.0895 | 19 |
0.2780 | 0.0799 | 20 |
0.2624 | 0.0734 | 21 |
0.2449 | 0.0662 | 22 |
0.2287 | 0.0626 | 23 |
0.2151 | 0.0559 | 24 |
0.2032 | 0.0525 | 25 |
0.1957 | 0.0492 | 26 |
0.1816 | 0.0466 | 27 |
0.1701 | 0.0432 | 28 |
0.1606 | 0.0418 | 29 |
0.1589 | 0.0398 | 30 |
0.1527 | 0.0370 | 31 |
0.1416 | 0.0340 | 32 |
0.1332 | 0.0344 | 33 |
0.1310 | 0.0318 | 34 |
0.1241 | 0.0304 | 35 |
0.1161 | 0.0295 | 36 |
0.1143 | 0.0281 | 37 |
0.1093 | 0.0271 | 38 |
0.1025 | 0.0272 | 39 |
0.0988 | 0.0258 | 40 |
0.0969 | 0.0247 | 41 |
0.0945 | 0.0239 | 42 |
0.0904 | 0.0232 | 43 |
0.0844 | 0.0227 | 44 |
0.0838 | 0.0224 | 45 |
0.0831 | 0.0216 | 46 |
0.0793 | 0.0210 | 47 |
0.0754 | 0.0206 | 48 |
0.0715 | 0.0204 | 49 |
0.0693 | 0.0195 | 50 |
0.0692 | 0.0187 | 51 |
0.0650 | 0.0183 | 52 |
0.0650 | 0.0178 | 53 |
0.0615 | 0.0173 | 54 |
0.0590 | 0.0171 | 55 |
0.0596 | 0.0165 | 56 |
0.0566 | 0.0162 | 57 |
0.0552 | 0.0159 | 58 |
0.0547 | 0.0153 | 59 |
0.0527 | 0.0149 | 60 |
0.0501 | 0.0147 | 61 |
0.0461 | 0.0142 | 62 |
0.0462 | 0.0141 | 63 |
0.0488 | 0.0137 | 64 |
0.0451 | 0.0135 | 65 |
0.0449 | 0.0131 | 66 |
0.0423 | 0.0134 | 67 |
0.0403 | 0.0127 | 68 |
0.0392 | 0.0122 | 69 |
0.0393 | 0.0119 | 70 |
0.0384 | 0.0117 | 71 |
0.0359 | 0.0117 | 72 |
0.0338 | 0.0111 | 73 |
0.0352 | 0.0111 | 74 |
0.0355 | 0.0108 | 75 |
0.0346 | 0.0106 | 76 |
0.0335 | 0.0102 | 77 |
0.0309 | 0.0095 | 78 |
0.0310 | 0.0094 | 79 |
0.0288 | 0.0092 | 80 |
0.0282 | 0.0093 | 81 |
0.0275 | 0.0089 | 82 |
0.0275 | 0.0084 | 83 |
0.0276 | 0.0082 | 84 |
0.0257 | 0.0079 | 85 |
0.0257 | 0.0078 | 86 |
0.0252 | 0.0071 | 87 |
0.0244 | 0.0070 | 88 |
0.0237 | 0.0072 | 89 |
0.0223 | 0.0063 | 90 |
0.0225 | 0.0059 | 91 |
0.0222 | 0.0061 | 92 |
0.0220 | 0.0057 | 93 |
0.0193 | 0.0054 | 94 |
0.0199 | 0.0053 | 95 |
0.0205 | 0.0046 | 96 |
0.0179 | 0.0043 | 97 |
0.0184 | 0.0048 | 98 |
0.0180 | 0.0043 | 99 |
0.0180 | 0.0037 | 100 |
0.0173 | 0.0037 | 101 |
0.0158 | 0.0036 | 102 |
0.0165 | 0.0032 | 103 |
0.0161 | 0.0034 | 104 |
0.0153 | 0.0030 | 105 |
0.0151 | 0.0026 | 106 |
0.0142 | 0.0021 | 107 |
0.0161 | 0.0019 | 108 |
0.0141 | 0.0018 | 109 |
0.0132 | 0.0018 | 110 |
0.0120 | 0.0015 | 111 |
0.0130 | 0.0011 | 112 |
0.0119 | 0.0012 | 113 |
0.0115 | 0.0011 | 114 |
0.0118 | 0.0009 | 115 |
0.0114 | 0.0008 | 116 |
0.0110 | 0.0006 | 117 |
0.0110 | 0.0006 | 118 |
0.0091 | 0.0006 | 119 |
0.0102 | 0.0005 | 120 |
0.0097 | 0.0005 | 121 |
0.0093 | 0.0004 | 122 |
0.0092 | 0.0003 | 123 |
0.0082 | 0.0003 | 124 |
0.0092 | 0.0002 | 125 |
0.0083 | 0.0002 | 126 |
0.0079 | 0.0002 | 127 |
0.0084 | 0.0002 | 128 |
0.0085 | 0.0002 | 129 |
0.0081 | 0.0001 | 130 |
0.0073 | 0.0001 | 131 |
0.0068 | 0.0001 | 132 |
0.0070 | 0.0001 | 133 |
0.0069 | 0.0001 | 134 |
0.0071 | 0.0001 | 135 |
0.0059 | 0.0001 | 136 |
0.0077 | 0.0001 | 137 |
0.0071 | 0.0001 | 138 |
0.0059 | 0.0000 | 139 |
0.0062 | 0.0000 | 140 |
0.0059 | 0.0000 | 141 |
0.0053 | 0.0000 | 142 |
0.0057 | 0.0000 | 143 |
0.0056 | 0.0000 | 144 |
0.0052 | 0.0000 | 145 |
0.0051 | 0.0000 | 146 |
0.0054 | 0.0000 | 147 |
0.0050 | 0.0000 | 148 |
0.0045 | 0.0000 | 149 |
0.0049 | 0.0000 | 150 |
0.0050 | 0.0000 | 151 |
0.0043 | 0.0000 | 152 |
0.0048 | 0.0000 | 153 |
0.0047 | 0.0000 | 154 |
0.0041 | 0.0000 | 155 |
0.0043 | 0.0000 | 156 |
0.0041 | 0.0000 | 157 |
0.0041 | 0.0000 | 158 |
0.0049 | 0.0000 | 159 |
0.0039 | 0.0000 | 160 |
0.0037 | 0.0000 | 161 |
0.0033 | 0.0000 | 162 |
0.0038 | 0.0000 | 163 |
0.0042 | 0.0000 | 164 |
0.0040 | 0.0000 | 165 |
0.0032 | 0.0000 | 166 |
0.0036 | 0.0000 | 167 |
0.0031 | 0.0000 | 168 |
0.0033 | 0.0000 | 169 |
0.0032 | 0.0000 | 170 |
0.0032 | 0.0000 | 171 |
0.0032 | 0.0000 | 172 |
0.0027 | 0.0000 | 173 |
0.0032 | 0.0000 | 174 |
0.0033 | 0.0000 | 175 |
0.0031 | 0.0000 | 176 |
0.0026 | 0.0000 | 177 |
0.0024 | 0.0000 | 178 |
0.0028 | 0.0000 | 179 |
0.0027 | 0.0000 | 180 |
0.0026 | 0.0000 | 181 |
0.0026 | 0.0000 | 182 |
0.0026 | 0.0000 | 183 |
0.0023 | 0.0000 | 184 |
0.0025 | 0.0000 | 185 |
0.0020 | 0.0000 | 186 |
0.0030 | 0.0000 | 187 |
0.0030 | 0.0000 | 188 |
0.0023 | 0.0000 | 189 |
0.0028 | 0.0000 | 190 |
0.0027 | 0.0000 | 191 |
0.0018 | 0.0000 | 192 |
0.0021 | 0.0000 | 193 |
0.0020 | 0.0000 | 194 |
0.0015 | 0.0000 | 195 |
0.0022 | 0.0000 | 196 |
0.0022 | 0.0000 | 197 |
0.0017 | 0.0000 | 198 |
0.0018 | 0.0000 | 199 |
0.0020 | 0.0000 | 200 |
0.0016 | 0.0000 | 201 |
0.0018 | 0.0000 | 202 |
0.0017 | 0.0000 | 203 |
0.0018 | 0.0000 | 204 |
0.0022 | 0.0000 | 205 |
0.0015 | 0.0000 | 206 |
0.0016 | 0.0000 | 207 |
0.0015 | 0.0000 | 208 |
0.0014 | 0.0000 | 209 |
0.0020 | 0.0000 | 210 |
0.0019 | 0.0000 | 211 |
0.0013 | 0.0000 | 212 |
0.0023 | 0.0000 | 213 |
0.0015 | 0.0000 | 214 |
0.0013 | 0.0000 | 215 |
0.0022 | 0.0000 | 216 |
0.0019 | 0.0000 | 217 |
0.0013 | 0.0000 | 218 |
0.0016 | 0.0000 | 219 |
0.0018 | 0.0000 | 220 |
0.0014 | 0.0000 | 221 |
0.0018 | 0.0000 | 222 |
0.0014 | 0.0000 | 223 |
0.0019 | 0.0000 | 224 |
0.0011 | 0.0000 | 225 |
0.0013 | 0.0000 | 226 |
0.0012 | 0.0000 | 227 |
0.0014 | 0.0000 | 228 |
0.0013 | 0.0000 | 229 |
0.0016 | 0.0000 | 230 |
0.0015 | 0.0000 | 231 |
0.0018 | 0.0000 | 232 |
0.0015 | 0.0000 | 233 |
0.0016 | 0.0000 | 234 |
0.0015 | 0.0000 | 235 |
0.0017 | 0.0000 | 236 |
0.0011 | 0.0000 | 237 |
0.0011 | 0.0000 | 238 |
0.0009 | 0.0000 | 239 |
0.0011 | 0.0000 | 240 |
0.0012 | 0.0000 | 241 |
0.0012 | 0.0000 | 242 |
0.0015 | 0.0000 | 243 |
0.0008 | 0.0000 | 244 |
0.0011 | 0.0000 | 245 |
0.0009 | 0.0000 | 246 |
0.0010 | 0.0000 | 247 |
0.0008 | 0.0000 | 248 |
0.0011 | 0.0000 | 249 |
0.0010 | 0.0000 | 250 |
0.0011 | 0.0000 | 251 |
0.0014 | 0.0000 | 252 |
0.0010 | 0.0000 | 253 |
0.0011 | 0.0000 | 254 |
0.0008 | 0.0000 | 255 |
0.0011 | 0.0000 | 256 |
0.0010 | 0.0000 | 257 |
0.0010 | 0.0000 | 258 |
0.0009 | 0.0000 | 259 |
0.0008 | 0.0000 | 260 |
0.0009 | 0.0000 | 261 |
0.0012 | 0.0000 | 262 |
0.0013 | 0.0000 | 263 |
0.0008 | 0.0000 | 264 |
0.0015 | 0.0000 | 265 |
0.0009 | 0.0000 | 266 |
0.0012 | 0.0000 | 267 |
0.0009 | 0.0000 | 268 |
0.0010 | 0.0000 | 269 |
0.0010 | 0.0000 | 270 |
0.0010 | 0.0000 | 271 |
0.0010 | 0.0000 | 272 |
0.0007 | 0.0000 | 273 |
0.0010 | 0.0000 | 274 |
0.0008 | 0.0000 | 275 |
0.0006 | 0.0000 | 276 |
0.0007 | 0.0000 | 277 |
0.0007 | 0.0000 | 278 |
0.0011 | 0.0000 | 279 |
0.0008 | 0.0000 | 280 |
0.0006 | 0.0000 | 281 |
0.0005 | 0.0000 | 282 |
0.0008 | 0.0000 | 283 |
0.0010 | 0.0000 | 284 |
0.0006 | 0.0000 | 285 |
0.0012 | 0.0000 | 286 |
0.0006 | 0.0000 | 287 |
0.0010 | 0.0000 | 288 |
0.0006 | 0.0000 | 289 |
0.0007 | 0.0000 | 290 |
0.0005 | 0.0000 | 291 |
0.0007 | 0.0000 | 292 |
0.0006 | 0.0000 | 293 |
0.0005 | 0.0000 | 294 |
0.0006 | 0.0000 | 295 |
0.0012 | 0.0000 | 296 |
0.0006 | 0.0000 | 297 |
0.0007 | 0.0000 | 298 |
0.0008 | 0.0000 | 299 |
0.0008 | 0.0000 | 300 |
0.0007 | 0.0000 | 301 |
0.0004 | 0.0000 | 302 |
0.0005 | 0.0000 | 303 |
0.0005 | 0.0000 | 304 |
0.0006 | 0.0000 | 305 |
0.0008 | 0.0000 | 306 |
0.0006 | 0.0000 | 307 |
0.0007 | 0.0000 | 308 |
0.0004 | 0.0000 | 309 |
0.0005 | 0.0000 | 310 |
0.0005 | 0.0000 | 311 |
0.0007 | 0.0000 | 312 |
0.0004 | 0.0000 | 313 |
0.0005 | 0.0000 | 314 |
0.0004 | 0.0000 | 315 |
0.0004 | 0.0000 | 316 |
0.0004 | 0.0000 | 317 |
0.0006 | 0.0000 | 318 |
0.0004 | 0.0000 | 319 |
0.0003 | 0.0000 | 320 |
0.0006 | 0.0000 | 321 |
0.0005 | 0.0000 | 322 |
0.0005 | 0.0000 | 323 |
0.0005 | 0.0000 | 324 |
0.0007 | 0.0000 | 325 |
0.0012 | 0.0000 | 326 |
0.0004 | 0.0000 | 327 |
0.0005 | 0.0000 | 328 |
0.0004 | 0.0000 | 329 |
0.0004 | 0.0000 | 330 |
0.0004 | 0.0000 | 331 |
0.0006 | 0.0000 | 332 |
0.0004 | 0.0000 | 333 |
0.0004 | 0.0000 | 334 |
0.0003 | 0.0000 | 335 |
0.0004 | 0.0000 | 336 |
0.0004 | 0.0000 | 337 |
0.0005 | 0.0000 | 338 |
0.0005 | 0.0000 | 339 |
0.0006 | 0.0000 | 340 |
0.0006 | 0.0000 | 341 |
0.0003 | 0.0000 | 342 |
0.0008 | 0.0000 | 343 |
0.0008 | 0.0000 | 344 |
0.0005 | 0.0000 | 345 |
0.0005 | 0.0000 | 346 |
0.0010 | 0.0000 | 347 |
0.0004 | 0.0000 | 348 |
0.0005 | 0.0000 | 349 |
0.0003 | 0.0000 | 350 |
0.0004 | 0.0000 | 351 |
0.0004 | 0.0000 | 352 |
0.0005 | 0.0000 | 353 |
0.0005 | 0.0000 | 354 |
0.0006 | 0.0000 | 355 |
0.0005 | 0.0000 | 356 |
0.0004 | 0.0000 | 357 |
0.0004 | 0.0000 | 358 |
0.0007 | 0.0000 | 359 |
0.0006 | 0.0000 | 360 |
0.0004 | 0.0000 | 361 |
0.0004 | 0.0000 | 362 |
0.0004 | 0.0000 | 363 |
0.0003 | 0.0000 | 364 |
0.0005 | 0.0000 | 365 |
0.0003 | 0.0000 | 366 |
0.0004 | 0.0000 | 367 |
0.0007 | 0.0000 | 368 |
0.0004 | 0.0000 | 369 |
0.0005 | 0.0000 | 370 |
0.0004 | 0.0000 | 371 |
0.0005 | 0.0000 | 372 |
0.0004 | 0.0000 | 373 |
0.0002 | 0.0000 | 374 |
0.0006 | 0.0000 | 375 |
0.0005 | 0.0000 | 376 |
0.0004 | 0.0000 | 377 |
0.0006 | 0.0000 | 378 |
0.0003 | 0.0000 | 379 |
0.0005 | 0.0000 | 380 |
0.0006 | 0.0000 | 381 |
0.0003 | 0.0000 | 382 |
0.0007 | 0.0000 | 383 |
0.0003 | 0.0000 | 384 |
0.0003 | 0.0000 | 385 |
0.0003 | 0.0000 | 386 |
0.0007 | 0.0000 | 387 |
0.0006 | 0.0000 | 388 |
0.0005 | 0.0000 | 389 |
0.0005 | 0.0000 | 390 |
0.0003 | 0.0000 | 391 |
0.0002 | 0.0000 | 392 |
0.0004 | 0.0000 | 393 |
0.0005 | 0.0000 | 394 |
0.0003 | 0.0000 | 395 |
0.0002 | 0.0000 | 396 |
0.0003 | 0.0000 | 397 |
0.0003 | 0.0000 | 398 |
0.0003 | 0.0000 | 399 |
0.0004 | 0.0000 | 400 |
0.0002 | 0.0000 | 401 |
0.0004 | 0.0000 | 402 |
0.0002 | 0.0000 | 403 |
0.0003 | 0.0000 | 404 |
0.0002 | 0.0000 | 405 |
0.0003 | 0.0000 | 406 |
0.0004 | 0.0000 | 407 |
0.0006 | 0.0000 | 408 |
0.0004 | 0.0000 | 409 |
0.0005 | 0.0000 | 410 |
0.0006 | 0.0000 | 411 |
0.0002 | 0.0000 | 412 |
0.0006 | 0.0000 | 413 |
0.0002 | 0.0000 | 414 |
0.0003 | 0.0000 | 415 |
0.0003 | 0.0000 | 416 |
0.0002 | 0.0000 | 417 |
0.0003 | 0.0000 | 418 |
0.0004 | 0.0000 | 419 |
0.0003 | 0.0000 | 420 |
0.0003 | 0.0000 | 421 |
0.0004 | 0.0000 | 422 |
0.0003 | 0.0000 | 423 |
0.0004 | 0.0000 | 424 |
0.0002 | 0.0000 | 425 |
0.0003 | 0.0000 | 426 |
0.0006 | 0.0000 | 427 |
0.0002 | 0.0000 | 428 |
0.0003 | 0.0000 | 429 |
0.0002 | 0.0000 | 430 |
0.0002 | 0.0000 | 431 |
0.0002 | 0.0000 | 432 |
0.0004 | 0.0000 | 433 |
0.0001 | 0.0000 | 434 |
0.0001 | 0.0000 | 435 |
0.0001 | 0.0000 | 436 |
0.0005 | 0.0000 | 437 |
0.0002 | 0.0000 | 438 |
0.0002 | 0.0000 | 439 |
0.0002 | 0.0000 | 440 |
0.0003 | 0.0000 | 441 |
0.0001 | 0.0000 | 442 |
0.0001 | 0.0000 | 443 |
0.0003 | 0.0000 | 444 |
0.0002 | 0.0000 | 445 |
0.0003 | 0.0000 | 446 |
0.0003 | 0.0000 | 447 |
0.0002 | 0.0000 | 448 |
0.0003 | 0.0000 | 449 |
0.0003 | 0.0000 | 450 |
0.0001 | 0.0000 | 451 |
0.0004 | 0.0000 | 452 |
0.0002 | 0.0000 | 453 |
0.0002 | 0.0000 | 454 |
0.0002 | 0.0000 | 455 |
0.0002 | 0.0000 | 456 |
0.0001 | 0.0000 | 457 |
0.0002 | 0.0000 | 458 |
0.0002 | 0.0000 | 459 |
0.0002 | 0.0000 | 460 |
0.0001 | 0.0000 | 461 |
0.0001 | 0.0000 | 462 |
0.0002 | 0.0000 | 463 |
0.0001 | 0.0000 | 464 |
0.0004 | 0.0000 | 465 |
0.0001 | 0.0000 | 466 |
0.0003 | 0.0000 | 467 |
0.0002 | 0.0000 | 468 |
0.0002 | 0.0000 | 469 |
0.0003 | 0.0000 | 470 |
0.0002 | 0.0000 | 471 |
0.0002 | 0.0000 | 472 |
0.0005 | 0.0000 | 473 |
0.0005 | 0.0000 | 474 |
0.0002 | 0.0000 | 475 |
0.0005 | 0.0000 | 476 |
0.0002 | 0.0000 | 477 |
0.0001 | 0.0000 | 478 |
0.0002 | 0.0000 | 479 |
0.0005 | 0.0000 | 480 |
0.0002 | 0.0000 | 481 |
0.0002 | 0.0000 | 482 |
0.0001 | 0.0000 | 483 |
0.0002 | 0.0000 | 484 |
0.0003 | 0.0000 | 485 |
0.0002 | 0.0000 | 486 |
0.0002 | 0.0000 | 487 |
0.0003 | 0.0000 | 488 |
0.0003 | 0.0000 | 489 |
0.0003 | 0.0000 | 490 |
0.0002 | 0.0000 | 491 |
0.0002 | 0.0000 | 492 |
0.0002 | 0.0000 | 493 |
0.0002 | 0.0000 | 494 |
0.0001 | 0.0000 | 495 |
0.0001 | 0.0000 | 496 |
0.0002 | 0.0000 | 497 |
0.0002 | 0.0000 | 498 |
0.0001 | 0.0000 | 499 |
0.0002 | 0.0000 | 500 |
0.0001 | 0.0000 | 501 |
0.0001 | 0.0000 | 502 |
0.0003 | 0.0000 | 503 |
0.0002 | 0.0000 | 504 |
0.0004 | 0.0000 | 505 |
0.0003 | 0.0000 | 506 |
0.0001 | 0.0000 | 507 |
0.0002 | 0.0000 | 508 |
0.0002 | 0.0000 | 509 |
0.0002 | 0.0000 | 510 |
0.0003 | 0.0000 | 511 |
0.0004 | 0.0000 | 512 |
0.0003 | 0.0000 | 513 |
0.0002 | 0.0000 | 514 |
0.0003 | 0.0000 | 515 |
0.0002 | 0.0000 | 516 |
0.0002 | 0.0000 | 517 |
0.0002 | 0.0000 | 518 |
0.0002 | 0.0000 | 519 |
0.0002 | 0.0000 | 520 |
0.0002 | 0.0000 | 521 |
0.0001 | 0.0000 | 522 |
0.0001 | 0.0000 | 523 |
0.0001 | 0.0000 | 524 |
0.0001 | 0.0000 | 525 |
0.0002 | 0.0000 | 526 |
0.0001 | 0.0000 | 527 |
0.0001 | 0.0000 | 528 |
0.0001 | 0.0000 | 529 |
0.0001 | 0.0000 | 530 |
0.0001 | 0.0000 | 531 |
0.0001 | 0.0000 | 532 |
0.0002 | 0.0000 | 533 |
0.0001 | 0.0000 | 534 |
0.0001 | 0.0000 | 535 |
0.0001 | 0.0000 | 536 |
0.0001 | 0.0000 | 537 |
0.0003 | 0.0000 | 538 |
Framework versions
- Transformers 4.46.1
- TensorFlow 2.17.0
- Datasets 3.1.0
- Tokenizers 0.20.2
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pijarcandra22/CitraNLP
Base model
google-t5/t5-small