|
--- |
|
language: |
|
- pt |
|
license: mit |
|
tags: |
|
- generated_from_keras_callback |
|
datasets: |
|
- assin2 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
pipeline_tag: text-classification |
|
base_model: neuralmind/bert-base-portuguese-cased |
|
model-index: |
|
- name: pmfsl/bertimbau-base-finetuned-rte |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Natural Lenguage Inference |
|
dataset: |
|
name: ASSIN2 |
|
type: assin2 |
|
metrics: |
|
- type: accuracy |
|
value: 0.877859477124183 |
|
- type: f1 |
|
value: 0.8860083873427372 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pmfsl/bertimbau-base-finetuned-rte |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0326 |
|
- Validation Loss: 0.1834 |
|
- Test Loss: 0.5695 |
|
- Train Accuracy: 0.9531 |
|
- Train F1: 0.9534 |
|
- Test Accuracy: 0.8778 |
|
- Test F1: 0.8860 |
|
- Epoch: 4 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 505, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Train F1 | Epoch | |
|
|:----------:|:---------------:|:--------------:|:--------:|:-----:| |
|
| 0.3846 | 0.2204 | 0.9152 | 0.9191 | 0 | |
|
| 0.1981 | 0.1577 | 0.9442 | 0.9455 | 1 | |
|
| 0.1026 | 0.1348 | 0.9509 | 0.9511 | 2 | |
|
| 0.0593 | 0.1492 | 0.9531 | 0.9542 | 3 | |
|
| 0.0326 | 0.1834 | 0.9531 | 0.9534 | 4 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |