pnr-svc's picture
End of training
2af2edf verified
metadata
base_model: FacebookAI/roberta-base
library_name: peft
license: mit
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: roberta-base-ner-qlorafinetune-runs-128-256
    results: []

roberta-base-ner-qlorafinetune-runs-128-256

This model is a fine-tuned version of FacebookAI/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1219
  • Precision: 0.9390
  • Recall: 0.9644
  • F1: 0.9515
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1187 1.0 2643 0.1579 0.9680 0.9512 0.9595 0.9749
0.1311 2.0 5286 0.1306 0.9290 0.9607 0.9446 0.9793
0.0897 3.0 7929 0.1219 0.9390 0.9644 0.9515 0.9817

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1