Edit model card

Wav2Vec2-XLSR-300m-es

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the spanish common_voice dataset thanks to the GPU credits generously given by the OVHcloud for the Speech Recognition challenge. It achieves the following results on the evaluation set

Without LM:

  • Loss : 0.1900
  • Wer : 0.146

With 5-gram:

  • WER: 0.109
  • CER: 0.036

Usage with 5-gram.

The model can be used with n-gram (n=5) included in the processor as follows.

import re
from transformers import AutoModelForCTC,Wav2Vec2ProcessorWithLM
import torch

# Loading model and processor
processor = Wav2Vec2ProcessorWithLM.from_pretrained("polodealvarado/xls-r-300m-es")
model = AutoModelForCTC.from_pretrained("polodealvarado/xls-r-300m-es")

# Cleaning characters
def remove_extra_chars(batch):
    chars_to_ignore_regex = '[^a-záéíóúñ ]'
    text = batch["translation"][target_lang]
    batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower())
    return batch
    
# Preparing dataset
def prepare_dataset(batch):
    audio = batch["audio"]
    batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"],return_tensors="pt",padding=True).input_values[0]    
    with processor.as_target_processor():
        batch["labels"] = processor(batch["sentence"]).input_ids
    return batch
  

common_voice_test = load_dataset("mozilla-foundation/common_voice_8_0", "es", split="test",use_auth_token=True)
common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000))        
common_voice_test = common_voice_test.map(remove_extra_chars, remove_columns=dataset.column_names)
common_voice_test = common_voice_test.map(prepare_dataset)

# Testing first sample
inputs = torch_tensor(common_voice_test[0]["input_values"])

with torch.no_grad():
    logits = model(inputs).logits

pred_ids = torch.argmax(logits, dim=-1)
text = processor.batch_decode(logits.numpy()).text
print(text) # 'bien y qué regalo vas a abrir primero'

On the other, you can execute the eval.py file for evaluation


# To use GPU: --device 0

$ python eval.py --model_id polodealvarado/xls-r-300m-es --dataset mozilla-foundation/common_voice_8_0 --config es --device 0 --split test

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.6747 0.3 400 0.6535 0.5926
0.4439 0.6 800 0.3753 0.3193
0.3291 0.9 1200 0.3267 0.2721
0.2644 1.2 1600 0.2816 0.2311
0.24 1.5 2000 0.2647 0.2179
0.2265 1.79 2400 0.2406 0.2048
0.1994 2.09 2800 0.2357 0.1869
0.1613 2.39 3200 0.2242 0.1821
0.1546 2.69 3600 0.2123 0.1707
0.1441 2.99 4000 0.2067 0.1619
0.1138 3.29 4400 0.2044 0.1519
0.1072 3.59 4800 0.1917 0.1457
0.0992 3.89 5200 0.1900 0.1438

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train polodealvarado/xls-r-300m-es

Evaluation results