YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

AI Text Detection Model

A Random Forest classifier that detects whether text is human-written or AI-generated (GPT/Deepseek).

Overview

  • Task: Binary classification (Human vs AI text)
  • Architecture: Random Forest with TF-IDF features
  • Input: Text string
  • Output: Classification label (Human/AI) with confidence score

Installation

# Clone the repository
!git clone https://huggingface.co/polygraf-ai/ai-text-detector-random-forest-supplementary
!cd  ai-text-detector-random-forest-supplementary

# Install the package
!pip install -e .

# Install requirements
pip install -r requirements.txt

Usage

# Single text prediction
from inference import predict_text

text = "Your text here to analyze"
result = predict_text(text, model_path="model_artifacts")
print(result)

# Output format:
{
    'label': 'Human-written',  # or 'AI-generated'
    'confidence': 0.85,  # confidence score between 0 and 1
    'probabilities': {
        'Human-written': 0.85,
        'AI-generated': 0.15
    }
}

# Multiple texts
texts = [
    "First text to analyze",
    "Second text to analyze"
]
results = [predict_text(text) for text in texts]

Limitations

  • Not suitable for high-level detection
  • Should be used as a supplementary tool only

Training Data

Text samples from:

  • Human writers
  • GPT-4 outputs
  • Deepseek Chat outputs

Metrics

  • Accuracy: 0.87
  • Precision: 0.87
  • Recall: 0.84
  • F1: 0.85
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .