license: mit
language:
- pt
pipeline_tag: fill-mask
tags:
- medialbertina-ptpt
- deberta
- portuguese
- european portuguese
- medical
- clinical
- healthcare
- encoder
widget:
- text: Febre e tosse são sintomas comuns de [MASK]
example_title: Example 1
- text: Diabetes [MASK] tipo II
example_title: Example 2
- text: Utente tolera dieta [MASK] / Nivel de glicémia bom.
example_title: Example 3
- text: Doente com administração de [MASK] com tramal.
example_title: Example 4
- text: Colocada sonda de gases por apresentar [MASK] timpanizado
example_title: Example 5
- text: Conectada em PRVC com necessidade de aumentar [MASK] para 70%
example_title: Example 6
- text: Medicado com [MASK] em dias alternados.
example_title: Example 7
- text: Realizado teste de [MASK] ao paciente
example_title: Example 8
- text: Sintomas apontam para COVID [MASK].
example_title: Example 9
- text: Durante internamento fez [MASK] fresco congelado 3x dia
example_title: Example 10
- text: Pupilas iso [MASK].
example_title: Example 11
- text: 'Cardiopatia [MASK] - causa provável: HAS'
example_title: Example 12
- text: O paciente encontra-se [MASK] estável.
example_title: Example 13
- text: Traumatismo [MASK] após acidente de viação.
example_title: Example 14
- text: Analgesia com morfina em perfusão (15 [MASK]/kg/h)
example_title: Example 15
MediAlbertina
The first publicly available medical language models trained with real European Portuguese data.
MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of PORTULAN's Albertina models with Electronic Medical Records shared by Portugal's largest public hospital.
Like its antecessors, MediAlbertina models are distributed under the MIT license.
Model Description
MediAlbertina PT-PT 1.5B was created through domain adaptation of Albertina PT-PT 1.5B on real European Portuguese EMRs by employing masked language modeling. It underwent evaluation through fine-tuning for the Information Extraction (IE) tasks Named Entity Recognition (NER) and Assertion Status (AStatus) on more than 10k manually annotated entities belonging to the following classes: Diagnosis, Symptom, Vital Sign, Result, Medical Procedure, Medication, Dosage, and Progress. In both tasks, MediAlbertina achieved superior results to its antecessors, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal.
Model | NER Single Model | NER Multi-Models (Diag+Symp) | NER Multi-Models (Med+Dos) | NER Multi-Models (MP+VS+R) | NER Multi-Models (Prog) | Assertion Status (Diag) | Assertion Status (Symp) | Assertion Status (Med) |
---|---|---|---|---|---|---|---|---|
F1-score | F1-score | F1-score | F1-score | F1-score | F1-score | F1-score | F1-score | |
Albertina PT-PT 900M | 0.813 | 0.771 | 0.886 | 0.777 | 0.784 | 0.703 | 0.803 | 0.556 |
Albertina PT-PT 1.5B | 0.838 | 0.801 | 0.924 | 0.836 | 0.877 | 0.772 | 0.881 | 0.862 |
MediAlbertina PT-PT 900M | 0.832 | 0.801 | 0.916 | 0.810 | 0.864 | 0.722 | 0.823 | 0.723 |
MediAlbertina PT-PT 1.5B | 0.843 | 0.813 | 0.926 | 0.851 | 0.858 | 0.789 | 0.886 | 0.868 |
Data
MediAlbertina PT-PT 1.5B was trained on more than 15M sentences and 300M tokens from 2.6M fully anonymized and unique Electronic Medical Records (EMRs) from Portugal's largest public hospital. This data was acquired under the framework of the FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence.
How to use
from transformers import pipeline
unmasker = pipeline('fill-mask', model='portugueseNLP/medialbertina_pt-pt_1.5b')
unmasker("Analgesia com morfina em perfusão (15 [MASK]/kg/h)")
Citation
MediAlbertina is developed by a joint team from ISCTE-IUL, Portugal, and Select Data, CA USA. For a fully detailed description, check the respective publication:
@article{MediAlbertina PT-PT,
title={MediAlbertina: An European Portuguese medical language model},
author={Miguel Nunes and João Boné and João Ferreira
and Pedro Chaves and Luís Elvas},
year={2024},
journal={CBM},
volume={182}
url={https://doi.org/10.1016/j.compbiomed.2024.109233}
}
Please use the above cannonical reference when using or citing this model.
Acknowledgements
This work was financially supported by Project Blockchain.PT – Decentralize Portugal with Blockchain Agenda, (Project no 51), WP2, Call no 02/C05-i01.01/2022, funded by the Portuguese Recovery and Resillience Program (PRR), The Portuguese Republic and The European Union (EU) under the framework of Next Generation EU Program.