Shark-Coder

Shark-Coder is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
    - model: powermove72/Shark-1
      layer_range: [0, 16]
  - sources:
    - model: S-miguel/The-Trinity-Coder-7B
      layer_range: [16, 32]
merge_method: passthrough
tokenizer_source: union
dtype: float16
    ```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "powermove72/Shark-Coder"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
29
Safetensors
Model size
7.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for powermove72/Shark-Coder

Merge model
this model
Merges
1 model
Quantizations
2 models