library_name: peft | |
base_model: mistralai/Mistral-7B-v0.1 | |
pipeline_tag: text-generation | |
Description: Does the hypothesis entail the premise?\ | |
Original dataset: https://huggingface.co/datasets/glue/viewer/mnli \ | |
---\ | |
Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ | |
The adapter_category is Academic Benchmarks and the name is Natural Language Inference (MNLI)\ | |
---\ | |
Sample input: You are given a premise and a hypothesis below. If the premise entails the hypothesis, return 0. If the premise contradicts the hypothesis, return 2. Otherwise, if the premise does neither, return 1.\n\n### Premise: You and your friends are not welcome here, said Severn.\n\n### Hypothesis: Severn said the people were not welcome there.\n\n### Label: \ | |
---\ | |
Sample output: 0\ | |
---\ | |
Try using this adapter yourself! | |
``` | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_id = "mistralai/Mistral-7B-v0.1" | |
peft_model_id = "predibase/glue_mnli" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
model.load_adapter(peft_model_id) | |
``` |