|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- web_nlg |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: web_nlg |
|
type: web_nlg |
|
config: en |
|
split: validation |
|
args: en |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 76.7573 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the web_nlg dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1274 |
|
- Rouge1: 76.7573 |
|
- Rouge2: 70.2881 |
|
- Rougel: 74.6384 |
|
- Rougelsum: 74.6743 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 1.9276 | 1.0 | 4429 | 0.4272 | 68.6843 | 56.7537 | 65.8818 | 65.9389 | |
|
| 0.5548 | 2.0 | 8858 | 0.2903 | 72.0968 | 62.884 | 69.6164 | 69.6271 | |
|
| 0.3936 | 3.0 | 13287 | 0.2308 | 73.8306 | 65.8224 | 71.4996 | 71.4971 | |
|
| 0.3093 | 4.0 | 17716 | 0.1632 | 75.0861 | 67.7273 | 72.9128 | 72.9615 | |
|
| 0.2592 | 5.0 | 22145 | 0.1484 | 75.7699 | 68.7078 | 73.5831 | 73.5905 | |
|
| 0.2295 | 6.0 | 26574 | 0.1353 | 76.4394 | 69.689 | 74.3168 | 74.3496 | |
|
| 0.2117 | 7.0 | 31003 | 0.1289 | 76.6532 | 69.9438 | 74.5065 | 74.5616 | |
|
| 0.2026 | 8.0 | 35432 | 0.1274 | 76.7573 | 70.2881 | 74.6384 | 74.6743 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|