librarian-bot's picture
Librarian Bot: Add base_model information to model
e01a540
|
raw
history blame
2.64 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - pritamdeka/cord-19-fulltext
metrics:
  - accuracy
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
model-index:
  - name: pubmedbert-fulltext-cord19
    results:
      - task:
          type: fill-mask
          name: Masked Language Modeling
        dataset:
          name: pritamdeka/cord-19-fulltext
          type: pritamdeka/cord-19-fulltext
          args: fulltext
        metrics:
          - type: accuracy
            value: 0.7175316733550737
            name: Accuracy

pubmedbert-fulltext-cord19

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the pritamdeka/cord-19-fulltext dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2667
  • Accuracy: 0.7175

Model description

The model has been trained using a maximum train sample size of 300K and evaluation size of 25K due to GPU limitations

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7985 0.27 5000 1.2710 0.7176
1.7542 0.53 10000 1.3359 0.7070
1.7462 0.8 15000 1.3489 0.7034
1.8371 1.07 20000 1.4361 0.6891
1.7102 1.33 25000 1.3502 0.7039
1.6596 1.6 30000 1.3341 0.7065
1.6265 1.87 35000 1.3228 0.7087
1.605 2.13 40000 1.3079 0.7099
1.5731 2.4 45000 1.2986 0.7121
1.5602 2.67 50000 1.2929 0.7136
1.5447 2.93 55000 1.2875 0.7143

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0