PyThagorean-10B / README.md
prithivMLmods's picture
Update README.md
3840692 verified
---
license: llama3.1
language:
- en
base_model:
- prithivMLmods/LwQ-Reasoner-10B
pipeline_tag: text-generation
library_name: transformers
tags:
- python
- math
- coder
- reasoner
- LCoT
- Llama
datasets:
- prithivMLmods/PyThagoreans-Merged
---
![python.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4nYxcbXSfu2Q0fIXul41e.gif)
# **PyThagorean-10B**
PyThagorean [Python + Math] is a Python and mathematics-based model designed to solve mathematical problems using Python libraries and coding. It has been fine-tuned on 1.5 million entries and is built on LLaMA's architecture. The model supports different parameter sizes, including 10B, 3B, and 1B (Tiny). These instruction-tuned, text-only models are optimized for multilingual dialogue use cases, including agent-based retrieval and summarization tasks. PyThagorean leverages an auto-regressive language model that uses an optimized transformer architecture. The tuned versions employ supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
# **Use with transformers**
Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
Make sure to update your transformers installation via `pip install --upgrade transformers`.
```python
import transformers
import torch
model_id = "prithivMLmods/PyThagorean-10B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are the helpful assistant. Solve the mathematical problem in Python programming."},
{"role": "user", "content": "Find all real numbers $x$ such that \[\frac{x^3+2x^2}{x^2+3x+2} + x = -6.\]Enter all the solutions, separated by commas."},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
# **Intended Use**
1. **Mathematical Problem Solving**:
PyThagorean is designed for solving complex mathematical problems, including algebra, calculus, trigonometry, and more, by leveraging Python-based libraries. It is ideal for educational tools, tutoring platforms, and automated math assistants.
2. **Python Code Generation**:
The model generates Python code snippets for mathematical computations, simulations, and problem-solving, making it valuable for developers, researchers, and students.
3. **Multilingual Dialogue Systems**:
With support for multiple languages, PyThagorean can assist users worldwide in understanding and solving mathematical problems through dialogue-based interfaces.
4. **Instruction-Following Tasks**:
The model excels at adhering to precise mathematical instructions and delivering accurate, step-by-step solutions for problems embedded in text.
5. **Agent-Based Knowledge Retrieval**:
PyThagorean can retrieve and summarize mathematical concepts or problem-solving techniques, enabling quick access to relevant knowledge for educational and research purposes.
6. **Educational Content Creation**:
It generates educational content such as example problems, solutions, and Python-based tutorials, aiding teachers and content creators.
7. **Summarization and Explanation**:
The model provides clear explanations and breakdowns of mathematical solutions, helping users understand the rationale and process behind the answers.
# **Limitations**
1. **Performance on Ambiguous Instructions**:
The model may struggle with ambiguous, vague, or poorly framed mathematical instructions, potentially leading to incorrect or incomplete solutions.
2. **Edge Cases and Special Scenarios**:
For highly specialized or niche mathematical problems, especially those not commonly encountered in training data, the model's performance may degrade.
3. **Errors in Multi-Step Reasoning**:
While trained on reasoning datasets, the model may sometimes produce incorrect results for multi-step or highly complex reasoning tasks, particularly if intermediate steps are not explicitly defined.
4. **Bias Toward Common Solutions**:
The model may favor standard or commonly used approaches to mathematical problems, potentially missing creative or less conventional methods of solution.
5. **Resource Intensity**:
As a large-scale model, PyThagorean requires significant computational resources, including high-end GPUs, for efficient inference and deployment.
6. **Context Window Limitations**:
The model's finite context window may lead to incomplete understanding or truncated responses for problems requiring extensive context or lengthy input.
7. **Handling of Non-Mathematical Queries**:
While capable of engaging in general conversations, its performance for non-mathematical tasks may not match models specifically tuned for broader use cases.
8. **Dependency on Python Libraries**:
Generated solutions may rely on specific Python libraries or functions, which users must have installed and configured correctly to execute the code successfully.