vit-base-v1-eval-epoch-maxgrad-decay-cosine
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2420
- Accuracy: 0.7032
Model description
Detects the 14 highest mountains in the world
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0001 | 0.9903 | 51 | 1.0182 | 0.7898 |
0.0027 | 2.0 | 103 | 1.4837 | 0.6688 |
0.0076 | 2.9903 | 154 | 1.2528 | 0.7420 |
0.0001 | 4.0 | 206 | 1.2986 | 0.7325 |
0.0007 | 4.9903 | 257 | 1.2049 | 0.7261 |
0.0001 | 6.0 | 309 | 1.1404 | 0.7707 |
0.0 | 6.9903 | 360 | 1.1531 | 0.7675 |
0.0 | 8.0 | 412 | 1.1605 | 0.7643 |
0.0 | 8.9903 | 463 | 1.1647 | 0.7643 |
0.0 | 10.0 | 515 | 1.1668 | 0.7675 |
0.0 | 10.9903 | 566 | 1.1690 | 0.7707 |
0.0 | 12.0 | 618 | 1.1702 | 0.7739 |
0.0 | 12.9903 | 669 | 1.1707 | 0.7739 |
0.0 | 14.0 | 721 | 1.1711 | 0.7739 |
0.0 | 14.8544 | 765 | 1.1710 | 0.7739 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 194
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for priyamarwaha/vit-base-v1-eval-epoch-maxgrad-decay-cosine
Base model
google/vit-base-patch16-224