metadata
license: apache-2.0
base_model: google/bigbird-roberta-base
tags:
- generated_from_trainer
model-index:
- name: bigbird-roberta-base-fineweb-edu-llama3-annotations-4096-vN
results: []
bigbird-roberta-base-fineweb-edu-llama3-annotations-4096-vN
This model is a fine-tuned version of google/bigbird-roberta-base on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set:
- Loss: 0.2176
- Mse: 0.2176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 90085
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Mse |
---|---|---|---|---|
0.4763 | 0.0288 | 100 | 0.4468 | 0.4468 |
0.3078 | 0.0577 | 200 | 0.3130 | 0.3130 |
0.3088 | 0.0865 | 300 | 0.2695 | 0.2695 |
0.2379 | 0.1153 | 400 | 0.2618 | 0.2618 |
0.289 | 0.1441 | 500 | 0.2583 | 0.2583 |
0.3049 | 0.1730 | 600 | 0.2723 | 0.2723 |
0.2292 | 0.2018 | 700 | 0.2477 | 0.2477 |
0.2677 | 0.2306 | 800 | 0.2369 | 0.2369 |
0.3181 | 0.2594 | 900 | 0.2307 | 0.2307 |
0.2551 | 0.2883 | 1000 | 0.2411 | 0.2411 |
0.2743 | 0.3171 | 1100 | 0.2350 | 0.2350 |
0.2383 | 0.3459 | 1200 | 0.2424 | 0.2424 |
0.2191 | 0.3747 | 1300 | 0.2279 | 0.2279 |
0.2431 | 0.4036 | 1400 | 0.2232 | 0.2232 |
0.2161 | 0.4324 | 1500 | 0.2307 | 0.2307 |
0.2459 | 0.4612 | 1600 | 0.2246 | 0.2246 |
0.2403 | 0.4900 | 1700 | 0.2232 | 0.2232 |
0.251 | 0.5189 | 1800 | 0.2421 | 0.2421 |
0.2565 | 0.5477 | 1900 | 0.2207 | 0.2207 |
0.2274 | 0.5765 | 2000 | 0.2294 | 0.2294 |
0.2272 | 0.6053 | 2100 | 0.2192 | 0.2192 |
0.2668 | 0.6342 | 2200 | 0.2204 | 0.2204 |
0.2434 | 0.6630 | 2300 | 0.2196 | 0.2196 |
0.2464 | 0.6918 | 2400 | 0.2185 | 0.2185 |
0.2338 | 0.7206 | 2500 | 0.2166 | 0.2166 |
0.243 | 0.7495 | 2600 | 0.2165 | 0.2165 |
0.1891 | 0.7783 | 2700 | 0.2201 | 0.2201 |
0.2355 | 0.8071 | 2800 | 0.2167 | 0.2167 |
0.2231 | 0.8359 | 2900 | 0.2168 | 0.2168 |
0.2274 | 0.8648 | 3000 | 0.2243 | 0.2243 |
0.2287 | 0.8936 | 3100 | 0.2203 | 0.2203 |
0.261 | 0.9224 | 3200 | 0.2186 | 0.2186 |
0.2187 | 0.9512 | 3300 | 0.2176 | 0.2176 |
0.2069 | 0.9801 | 3400 | 0.2178 | 0.2178 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1