pszemraj's picture
End of training
3739f98 verified
|
raw
history blame
2.35 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-nano-22k-384
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
  - matthews_correlation
model-index:
  - name: convnextv2-nano-22k-384-boulderspot-vN
    results: []

convnextv2-nano-22k-384-boulderspot-vN

This model is a fine-tuned version of facebook/convnextv2-nano-22k-384 on the pszemraj/boulderspot dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0340
  • Accuracy: 0.9883
  • F1: 0.9883
  • Precision: 0.9883
  • Recall: 0.9883
  • Matthews Correlation: 0.8962

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 7890
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Matthews Correlation
0.1102 1.0 203 0.0431 0.9839 0.9840 0.9841 0.9839 0.8590
0.0559 2.0 406 0.0476 0.9839 0.9845 0.9858 0.9839 0.8709
0.0402 3.0 609 0.0464 0.9810 0.9817 0.9831 0.9810 0.8468
0.0334 4.0 813 0.0348 0.9868 0.9869 0.9870 0.9868 0.8846
0.0445 4.99 1015 0.0340 0.9883 0.9883 0.9883 0.9883 0.8962

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.4.0.dev20240328+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2