|
--- |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- multilingual |
|
- PyTorch |
|
- Transformers |
|
- gpt3 |
|
- gpt2 |
|
- Deepspeed |
|
- Megatron |
|
- mGPT |
|
datasets: |
|
- mc4 |
|
- Wikipedia |
|
|
|
widget: |
|
- text: "Ich weiß, dass du müde bist, aber können wir heute Abend noch einen Spaziergang machen? peter szemraj: ich" |
|
example_title: "walk - Deutsch" |
|
- text: "peter szemraj: 我喜欢穿很酷的衣服" |
|
example_title: "fashion - Chinese" |
|
- text: "Wat zei je over mijn moeder? peter szemraj: Ik" |
|
example_title: "🚎 - Dutch" |
|
- text: "Zagadka: Człowiekowi, który przebywał na dworze w deszczu bez parasola czy kapelusza, nie zmoczył się ani jeden włos na głowie. Dlaczego? peter szemraj: Czy to" |
|
example_title: "brain teaser - Polish" |
|
- text: "Minha amiga diz que conhece todas as línguas, mas não fala nenhuma delas... o que há de errado com ela? peter szemraj: Eu" |
|
example_title: "language - Portuguese" |
|
- text: "se potesse vivere ovunque, dove sarebbe? peter szemraj: Io" |
|
example_title: "dream living place - Italian" |
|
- text: "Can you take me for dinner somewhere nice this time?\npeter szemraj:\n\n" |
|
example_title: "dinner" |
|
- text: "What really makes you angry?\npeter szemraj:\n\n" |
|
example_title: "pet peeve" |
|
- text: "Jak nazwać aligatora, który właśnie przeszedł operację usunięcia lewego ramienia?peter szemraj: Ja" |
|
example_title: "alligator - Polish" |
|
- text: "Warum sind Transformers für die Sprachmodellierung wichtig? peter szemraj: Es ist" |
|
example_title: "Transformers - German" |
|
- text: "как написать хорошие подсказки для языковых моделей? peter szemraj: сначала вам нужно" |
|
example_title: "prompt tutorial - Russian" |
|
- text: "Pewien mężczyzna wpycha swój samochód do hotelu i mówi właścicielowi, że jest bankrutem. Dlaczego? peter szemraj: może" |
|
example_title: "brain teaser - Polish 2" |
|
- text: "Zagadka: Mówię bez ust i słyszę bez uszu. Nie mam ciała, ale ożywiam się wraz z wiatrem. Czym jestem? peter szemraj: Czy to" |
|
example_title: "brain teaser - Polish 3" |
|
- text: "Què t'agrada fer per divertir-te? peter szemraj: M'agrada" |
|
example_title: "hobbies - Catalan" |
|
- text: "为什么你总是那么累?peter szemraj: 呃,我想" |
|
example_title: "tired - Chinese" |
|
|
|
inference: |
|
parameters: |
|
min_length: 2 |
|
max_length: 64 |
|
no_repeat_ngram_size: 3 |
|
do_sample: True |
|
top_p: 0.95 |
|
top_k: 25 |
|
temperature: 0.65 |
|
repetition_penalty: 3.5 |
|
|
|
--- |
|
|
|
|
|
# mGPT: fine-tune on message data - 2E |
|
|
|
- This model is a fine-tuned version of [sberbank-ai/mGPT](https://huggingface.co/sberbank-ai/mGPT) on 80k messages. This builds on the minimum-working-example checkpoint [here](https://huggingface.co/pszemraj/mGPT-Peter-mwe). |
|
- 2E = 2 epochs |
|
|
|
## Model description |
|
|
|
- testing if fine-tuned personality data bleeds over to other languages without being trained in them explicitly |
|
|
|
**Interesting findings thus far:** |
|
|
|
- Passing a generic word after the `<name-identifier>` that is in a non-English language helps ensure the model responds in the question language (see: any example). |
|
- Model generations (in general) remain semantically consistent, even if the generations switch from `<language>`to English in the middle of the generated text. This demonstrates some sort of "universal concept understanding" |
|
|
|
### Usage in python |
|
|
|
Install the transformers library if you don't have it: |
|
|
|
``` |
|
pip install -U transformers |
|
``` |
|
|
|
load the model into a pipeline object: |
|
|
|
|
|
``` |
|
from transformers import pipeline |
|
import torch |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
my_chatbot = pipeline('text-generation', |
|
'pszemraj/mGPT-Peter-2E', |
|
device=0 if device == 'cuda' else -1, |
|
) |
|
``` |
|
|
|
|
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 (in addition to all training on prior checkpoints) |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|