metadata
license: apache-2.0
pipeline_tag: text-generation
tags:
- multilingual
- PyTorch
- Transformers
- gpt3
- gpt2
- Deepspeed
- Megatron
- mGPT
datasets:
- mc4
- Wikipedia
widget:
- text: >-
Ich weiß, dass du müde bist, aber können wir heute Abend noch einen
Spaziergang machen? peter szemraj: ich
example_title: walk - Deutsch
- text: 'peter szemraj: 我喜欢穿很酷的衣服'
example_title: fashion - Chinese
- text: 'Wat zei je over mijn moeder? peter szemraj: ik'
example_title: 🚎 - Dutch
- text: >-
Zagadka: Człowiekowi, który przebywał na dworze w deszczu bez parasola czy
kapelusza, nie zmoczył się ani jeden włos na głowie. Dlaczego? peter
szemraj: czy to
example_title: brain teaser - Polish
- text: >-
Minha amiga diz que conhece todas as línguas, mas não fala nenhuma
delas... o que há de errado com ela? peter szemraj: eu
example_title: language - Portuguese
- text: 'se potesse vivere ovunque, dove sarebbe? peter szemraj: io'
example_title: dream living place - Italian
- text: 'Can you take me for dinner somewhere nice this time? peter szemraj:'
example_title: dinner
- text: 'What really makes you angry? peter szemraj:'
example_title: pet peeve
- text: >-
Jak nazwać aligatora, który właśnie przeszedł operację usunięcia lewego
ramienia?peter szemraj: ja
example_title: alligator - Polish
- text: >-
Warum sind Transformers für die Sprachmodellierung wichtig? peter
szemraj: es ist
example_title: Transformers - German
- text: >-
как написать хорошие подсказки для языковых моделей? peter szemraj:
сначала вам нужно
example_title: prompt tutorial - Russian
- text: >-
Pewien mężczyzna wpycha swój samochód do hotelu i mówi właścicielowi, że
jest bankrutem. Dlaczego? peter szemraj: może
example_title: brain teaser - Polish 2
- text: >-
Zagadka: Mówię bez ust i słyszę bez uszu. Nie mam ciała, ale ożywiam się
wraz z wiatrem. Czym jestem? peter szemraj: czy to
example_title: brain teaser - Polish 3
- text: 'Què t''agrada fer per divertir-te? peter szemraj: m''agrada'
example_title: hobbies - Catalan
- text: '为什么你总是那么累?peter szemraj: 呃,我想'
example_title: tired - Chinese
inference:
parameters:
min_length: 2
max_length: 64
do_sample: true
top_k: 10
top_p: 0.9
temperature: 0.65
repetition_penalty: 3.5
no_repeat_ngram_size: 3
length_penalty: 0.4
pad_token: 1
mGPT: fine-tune on message data - 2E
- This model is a fine-tuned version of sberbank-ai/mGPT on 80k messages. This builds on the minimum-working-example checkpoint here.
- 2E = 2 epochs
Model description
- testing if fine-tuned personality data bleeds over to other languages without being trained in them explicitly
Interesting findings thus far:
- Passing a generic word after the
<name-identifier>
that is in a non-English language helps ensure the model responds in the question language (see: any example). - Model generations (in general) remain semantically consistent, even if the generations switch from
<language>
to English in the middle of the generated text. This demonstrates some sort of "universal concept understanding"
Usage in python
Install the transformers library if you don't have it:
pip install -U transformers
load the model into a pipeline object:
from transformers import pipeline
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
my_chatbot = pipeline('text-generation',
'pszemraj/mGPT-Peter-2E',
device=0 if device == 'cuda' else -1,
)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1 (in addition to all training on prior checkpoints)
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1