metadata
base_model: microsoft/mpnet-base
tags:
- generated_from_trainer
model-index:
- name: mpnet-base-fineweb-edu-llama3-annotations-512-vN
results: []
mpnet-base-fineweb-edu-llama3-annotations-512-vN
This model is a fine-tuned version of microsoft/mpnet-base on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset. It achieves the following results on the evaluation set:
- Loss: 0.2105
- Mse: 0.2105
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 90085
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-09
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Mse |
---|---|---|---|---|
0.5887 | 0.0288 | 100 | 0.6419 | 0.6419 |
0.371 | 0.0577 | 200 | 0.3439 | 0.3439 |
0.3607 | 0.0865 | 300 | 0.2844 | 0.2844 |
0.2576 | 0.1153 | 400 | 0.2589 | 0.2589 |
0.2822 | 0.1441 | 500 | 0.2707 | 0.2707 |
0.2908 | 0.1730 | 600 | 0.2382 | 0.2382 |
0.2258 | 0.2018 | 700 | 0.2405 | 0.2405 |
0.2604 | 0.2306 | 800 | 0.2318 | 0.2318 |
0.2961 | 0.2594 | 900 | 0.2186 | 0.2186 |
0.2453 | 0.2883 | 1000 | 0.2168 | 0.2168 |
0.278 | 0.3171 | 1100 | 0.2247 | 0.2247 |
0.2319 | 0.3459 | 1200 | 0.2142 | 0.2142 |
0.1983 | 0.3747 | 1300 | 0.2175 | 0.2175 |
0.2264 | 0.4036 | 1400 | 0.2306 | 0.2306 |
0.2175 | 0.4324 | 1500 | 0.2375 | 0.2375 |
0.2461 | 0.4612 | 1600 | 0.2493 | 0.2493 |
0.2419 | 0.4900 | 1700 | 0.2234 | 0.2234 |
0.2411 | 0.5189 | 1800 | 0.2137 | 0.2137 |
0.2473 | 0.5477 | 1900 | 0.2140 | 0.2140 |
0.237 | 0.5765 | 2000 | 0.2177 | 0.2177 |
0.1972 | 0.6053 | 2100 | 0.2186 | 0.2186 |
0.2556 | 0.6342 | 2200 | 0.2416 | 0.2416 |
0.2273 | 0.6630 | 2300 | 0.2197 | 0.2197 |
0.223 | 0.6918 | 2400 | 0.2253 | 0.2253 |
0.2028 | 0.7206 | 2500 | 0.2239 | 0.2239 |
0.2322 | 0.7495 | 2600 | 0.2180 | 0.2180 |
0.1933 | 0.7783 | 2700 | 0.2158 | 0.2158 |
0.2085 | 0.8071 | 2800 | 0.2298 | 0.2298 |
0.2038 | 0.8359 | 2900 | 0.2166 | 0.2166 |
0.2158 | 0.8648 | 3000 | 0.2084 | 0.2084 |
0.2197 | 0.8936 | 3100 | 0.2145 | 0.2145 |
0.2397 | 0.9224 | 3200 | 0.2163 | 0.2163 |
0.2307 | 0.9512 | 3300 | 0.2160 | 0.2160 |
0.2099 | 0.9801 | 3400 | 0.2101 | 0.2101 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1