metadata
license: apache-2.0
datasets:
- hoskinson-center/proofnet
language:
- en
base_model:
- internlm/internlm2-math-7b
- deepseek-ai/deepseek-math-7b-base
pipeline_tag: text-generation
library_name: transformers
tags:
- lean4
- statement-autoformalization
- formal-mathematics
[ICLR'25 Spotlight] Rethinking and Improving Autoformalization: Towards a Faithful Metric and a Dependency Retrieval-based Approach
Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, Junchi Yan* (* indicates Correspondence author)
Sch. of Computer Science & Sch. of Artificial Intelligence, Shanghai Jiao Tong University
Please refer to the 📺GitHub repo and 📃Paper for more details.
📈 Performance
Benchmark | ProofNet | Con-NF | |
---|---|---|---|
InternLM2-Math 7B | Rautoformalizer (-R) | 16.58% | 4.58% |
RAutoformalizer | 18.18% | 16.86% | |
Rautoformalizer (+R) | 31.28% | 55.36% | |
DeepseekMath 7B | Rautoformalizer (-R) | 15.24% | 4.27% |
RAutoformalizer | 17.91% | 15.30% | |
Rautoformalizer (+R) | 32.62% | 59.00% |
⚙️ Usage
w/o Dependency Retrieval
- 🤗
purewhite42/rautoformalizer_nora_deepseek
: w/o dependency retrieval, SFTed from 🤗deepseek-ai/deepseek-math-7b-base
- 🤗
purewhite42/rautoformalizer_nora_internlm
: w/o dependency retrieval, SFTed from 🤗internlm/internlm2-math-7b
python -m autoformalizer.autoformalize_vllm_passk \
--port ... \ # Can be arbitrarily set (should avoid conflict)
--trust-remote-code \
--enable-prefix-caching \
--model /path/to/model \
--mathlib_root ... \ # Path to Mathlib 4 or path to Con(NF)
--eval_set ... \ # {proofnet, connf}
--working_root /path/to/output/results \
--dataset_root ./data/ \
--repl_root /path/to/repl \
--try_num 8 \
--num_concurrency 8 \
--temperature 0.0;
RAutofromalizer (w/ Dependency Retrieval)
- 🤗
purewhite42/rautoformalizer_ra_deepseek
: w/ dependency retrieval (dependency_retriever_f
), SFTed from 🤗deepseek-ai/deepseek-math-7b-base
- 🤗
purewhite42/rautoformalizer_ra_internlm
: w/ dependency retrieval (dependency_retriever_f
), SFTed from 🤗internlm/internlm2-math-7b
python -m autoformalizer.autoformalize_vllm_w_ra_passk \
--port ... \ # Can be arbitrarily set (should avoid conflict)
--trust-remote-code \
--enable-prefix-caching \
--model /path/to/model \
--retrieval_result_path /path/to/retrieval/result \
--mathlib_root ... \ # Path to Mathlib 4 or path to Con(NF)
--eval_set ... \ # {proofnet, connf}
--working_root /path/to/output/results \
--dataset_root ./data/ \
--repl_root /path/to/repl \
--try_num 8 \
--num_concurrency 8 \
--temperature 0.0;
Oracle RAutoformalizer (w/ Ground-truth Dependencies)
- 🤗
purewhite42/rautoformalizer_gtra_deepseek
: w/ oracle dependency retrieval, SFTed from 🤗deepseek-ai/deepseek-math-7b-base
- 🤗
purewhite42/rautoformalizer_gtra_internlm
: w/ oracle dependency retrieval, SFTed from 🤗internlm/internlm2-math-7b
python -m autoformalizer.autoformalize_vllm_w_gt_passk \
--port ... \ # Can be arbitrarily set (should avoid conflict)
--trust-remote-code \
--enable-prefix-caching \
--model /path/to/model \
--mathlib_root ... \ # Path to Mathlib 4 or path to Con(NF)
--eval_set ... \ # {proofnet, connf}
--working_root /path/to/output/results \
--dataset_root ./data/ \
--repl_root /path/to/repl \
--try_num 8 \
--num_concurrency 8 \
--temperature 0.0;
📚 Citation
If you find our work useful in your research, please cite
@inproceedings{
liu2025rethinking,
title={Rethinking and improving autoformalization: towards a faithful metric and a Dependency Retrieval-based approach},
author={Qi Liu and Xinhao Zheng and Xudong Lu and Qinxiang Cao and Junchi Yan},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=hUb2At2DsQ}
}
License
This project is released under the Apache 2.0 license. Please see the LICENSE file for more information.
Contact
Feel free to discuss the paper/data/code with us through issues/emails!
- Qi Liu: [email protected]