You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)
from torch.nn import nn

BASE_MODEL = "CarperAI/stable-vicuna-13b-delta"
RM_PATH = "vicuna-v0-rm.pt"


class GPTRewardModel(nn.Module):
    def __init__(self):
        super().__init__()
        model = AutoModelForCausalLM.from_pretrained(BASE_MODEL)
        self.config = model.config
        self.config.n_embd = self.config.hidden_size if hasattr(self.config, "hidden_size") else self.config.n_embd
        self.transformer = model.model
        self.v_head = nn.Linear(self.config.n_embd, 1, bias=False)
        self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
        self.PAD_ID = self.tokenizer.pad_token_id


    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        mc_token_ids=None,
        labels=None,
        return_dict=False,
        output_attentions=False,
        output_hidden_states=False,
    ):
        loss = None
        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
        )

        hidden_states = transformer_outputs[0]

        rewards = self.v_head(hidden_states).squeeze(-1)
        end_scores = []
        bs = input_ids.shape[0]

        loss = 0
        inference = False
        
        for i in range(bs):
          c_inds = (input_ids[i] == self.PAD_ID).nonzero()
          c_ind = c_inds[0].item() if len(c_inds) > 0 else input_ids.shape[1]
          end_scores.append(rewards[i, c_ind - 1])

        chosen_end_scores = torch.stack(end_scores)
        return {"end_scores": chosen_end_scores}


rw_tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
rw_tokenizer.padding_side = "right"
rw_model = GPTRewardModel()
rw_model.load_state_dict(torch.load(RM_PATH)['module'])
rw_model.half()
rw_model.eval()


def get_scores(samples: List[str]):
    scores_list = []
    batch_size = 2
    for i in range(0, len(samples), batch_size):
        sub_samples = samples[i : i + batch_size]
        sub_samples = [chosen for chosen in sub_samples]
        encodings_dict = rw_tokenizer(
            sub_samples,
            truncation=True,
            max_length=config.train.seq_length,
            padding="max_length",
            return_tensors="pt",
        )
        input_ids = encodings_dict["input_ids"].to(rw_device)
        attn_masks = encodings_dict["attention_mask"].to(rw_device)
        with torch.no_grad():
            sub_scores = rw_model(input_ids=input_ids, attention_mask=attn_masks)
        scores_list.append(sub_scores["end_scores"])
    scores = torch.cat(scores_list, dim=0)
    return scores
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .