conditional-detr-resnet-50-uLED-obj-detect-test

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0912
  • Map: 0.9334
  • Map 50: 0.9684
  • Map 75: 0.9684
  • Map Small: -1.0
  • Map Medium: 0.9334
  • Map Large: -1.0
  • Mar 1: 0.0125
  • Mar 10: 0.1259
  • Mar 100: 0.9777
  • Mar Small: -1.0
  • Mar Medium: 0.9777
  • Mar Large: -1.0
  • Map Uled: 0.9334
  • Mar 100 Uled: 0.9777
  • Map Trash: -1.0
  • Mar 100 Trash: -1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Uled Mar 100 Uled Map Trash Mar 100 Trash
No log 1.0 41 0.2460 0.7925 0.9619 0.9382 -1.0 0.7925 -1.0 0.0115 0.1133 0.8652 -1.0 0.8652 -1.0 0.7925 0.8652 -1.0 -1.0
No log 2.0 82 0.2123 0.8121 0.9671 0.9527 -1.0 0.8121 -1.0 0.0111 0.1125 0.8797 -1.0 0.8797 -1.0 0.8121 0.8797 -1.0 -1.0
No log 3.0 123 0.1597 0.8576 0.9645 0.963 -1.0 0.8576 -1.0 0.0118 0.1181 0.9217 -1.0 0.9217 -1.0 0.8576 0.9217 -1.0 -1.0
No log 4.0 164 0.1645 0.8532 0.9644 0.9606 -1.0 0.8532 -1.0 0.0118 0.1184 0.9174 -1.0 0.9174 -1.0 0.8532 0.9174 -1.0 -1.0
No log 5.0 205 0.2037 0.824 0.9632 0.9614 -1.0 0.824 -1.0 0.0115 0.1142 0.8826 -1.0 0.8826 -1.0 0.824 0.8826 -1.0 -1.0
No log 6.0 246 0.1342 0.8864 0.9672 0.9665 -1.0 0.8864 -1.0 0.0119 0.1213 0.9429 -1.0 0.9429 -1.0 0.8864 0.9429 -1.0 -1.0
No log 7.0 287 0.1365 0.8821 0.9677 0.9672 -1.0 0.8821 -1.0 0.0121 0.1218 0.9362 -1.0 0.9362 -1.0 0.8821 0.9362 -1.0 -1.0
No log 8.0 328 0.1470 0.872 0.9666 0.9662 -1.0 0.872 -1.0 0.0119 0.12 0.9326 -1.0 0.9326 -1.0 0.872 0.9326 -1.0 -1.0
No log 9.0 369 0.1783 0.8495 0.9678 0.9673 -1.0 0.8495 -1.0 0.0118 0.118 0.9017 -1.0 0.9017 -1.0 0.8495 0.9017 -1.0 -1.0
No log 10.0 410 0.1563 0.8676 0.9662 0.9643 -1.0 0.8676 -1.0 0.012 0.1203 0.9225 -1.0 0.9225 -1.0 0.8676 0.9225 -1.0 -1.0
No log 11.0 451 0.1458 0.8783 0.966 0.9658 -1.0 0.8783 -1.0 0.012 0.121 0.9321 -1.0 0.9321 -1.0 0.8783 0.9321 -1.0 -1.0
No log 12.0 492 0.1273 0.8939 0.9669 0.9667 -1.0 0.8939 -1.0 0.0123 0.1234 0.9462 -1.0 0.9462 -1.0 0.8939 0.9462 -1.0 -1.0
0.2348 13.0 533 0.1376 0.8862 0.9683 0.968 -1.0 0.8862 -1.0 0.0121 0.1217 0.9404 -1.0 0.9404 -1.0 0.8862 0.9404 -1.0 -1.0
0.2348 14.0 574 0.1338 0.8865 0.9669 0.9668 -1.0 0.8865 -1.0 0.0122 0.1222 0.9422 -1.0 0.9422 -1.0 0.8865 0.9422 -1.0 -1.0
0.2348 15.0 615 0.1258 0.8917 0.9685 0.9685 -1.0 0.8917 -1.0 0.012 0.1221 0.9454 -1.0 0.9454 -1.0 0.8917 0.9454 -1.0 -1.0
0.2348 16.0 656 0.1206 0.8998 0.9689 0.9689 -1.0 0.8998 -1.0 0.0123 0.1233 0.9524 -1.0 0.9524 -1.0 0.8998 0.9524 -1.0 -1.0
0.2348 17.0 697 0.1075 0.911 0.969 0.969 -1.0 0.911 -1.0 0.0123 0.1238 0.9612 -1.0 0.9612 -1.0 0.911 0.9612 -1.0 -1.0
0.2348 18.0 738 0.1084 0.9113 0.9692 0.9691 -1.0 0.9113 -1.0 0.0123 0.1237 0.9628 -1.0 0.9628 -1.0 0.9113 0.9628 -1.0 -1.0
0.2348 19.0 779 0.1104 0.91 0.9688 0.9688 -1.0 0.91 -1.0 0.0123 0.1236 0.9602 -1.0 0.9602 -1.0 0.91 0.9602 -1.0 -1.0
0.2348 20.0 820 0.1097 0.9103 0.9693 0.9693 -1.0 0.9103 -1.0 0.0123 0.1241 0.9616 -1.0 0.9616 -1.0 0.9103 0.9616 -1.0 -1.0
0.2348 21.0 861 0.1111 0.9106 0.9666 0.9665 -1.0 0.9106 -1.0 0.0123 0.1242 0.9624 -1.0 0.9624 -1.0 0.9106 0.9624 -1.0 -1.0
0.2348 22.0 902 0.1007 0.923 0.9667 0.9666 -1.0 0.923 -1.0 0.0125 0.1251 0.972 -1.0 0.972 -1.0 0.923 0.972 -1.0 -1.0
0.2348 23.0 943 0.1080 0.9103 0.9671 0.9671 -1.0 0.9103 -1.0 0.0123 0.1242 0.9612 -1.0 0.9612 -1.0 0.9103 0.9612 -1.0 -1.0
0.2348 24.0 984 0.0987 0.9197 0.967 0.967 -1.0 0.9197 -1.0 0.0124 0.1253 0.9697 -1.0 0.9697 -1.0 0.9197 0.9697 -1.0 -1.0
0.1648 25.0 1025 0.0979 0.9226 0.9675 0.9675 -1.0 0.9226 -1.0 0.0125 0.1253 0.9715 -1.0 0.9715 -1.0 0.9226 0.9715 -1.0 -1.0
0.1648 26.0 1066 0.0912 0.9334 0.9684 0.9684 -1.0 0.9334 -1.0 0.0125 0.1259 0.9777 -1.0 0.9777 -1.0 0.9334 0.9777 -1.0 -1.0
0.1648 27.0 1107 0.0926 0.9311 0.9682 0.9682 -1.0 0.9311 -1.0 0.0125 0.1258 0.9763 -1.0 0.9763 -1.0 0.9311 0.9763 -1.0 -1.0
0.1648 28.0 1148 0.0933 0.9301 0.9682 0.9681 -1.0 0.9301 -1.0 0.0125 0.1258 0.9756 -1.0 0.9756 -1.0 0.9301 0.9756 -1.0 -1.0
0.1648 29.0 1189 0.0937 0.9301 0.9682 0.9681 -1.0 0.9301 -1.0 0.0125 0.1259 0.9758 -1.0 0.9758 -1.0 0.9301 0.9758 -1.0 -1.0
0.1648 30.0 1230 0.0932 0.9311 0.9682 0.9681 -1.0 0.9311 -1.0 0.0125 0.126 0.9763 -1.0 0.9763 -1.0 0.9311 0.9763 -1.0 -1.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
43.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for pylu5229/conditional-detr-resnet-50-uLED-obj-detect-test

Finetuned
(52)
this model