Irony detection in English
bertweet-irony
Repository: https://github.com/pysentimiento/pysentimiento/
Model trained with SemEval 2018 dataset Task 3 (Van Hee et all, 2018) for irony detection. Base model is [BERTweet], a RoBERTa model trained in English tweets.
The positive class marks irony, the negative class marks not ironic content.
Results
Results for the four tasks evaluated in pysentimiento
. Results are expressed as Macro F1 scores
Model | sentiment | emotion | hate_speech | irony |
---|---|---|---|---|
bert | 69.6 +- 0.4 | 42.7 +- 0.6 | 56.0 +- 0.8 | 68.1 +- 2.2 |
electra | 70.9 +- 0.4 | 37.2 +- 2.9 | 55.6 +- 0.6 | 71.3 +- 1.8 |
roberta | 70.4 +- 0.3 | 45.0 +- 0.9 | 55.1 +- 0.4 | 70.4 +- 2.9 |
robertuito | 69.6 +- 0.5 | 43.0 +- 3.3 | 57.5 +- 0.2 | 73.9 +- 1.4 |
bertweet | 72.0 +- 0.4 | 43.1 +- 1.8 | 57.7 +- 0.7 | 80.8 +- 0.7 |
Note that for Hate Speech, these are the results for Semeval 2019, Task 5 Subtask B (HS+TR+AG detection)
Citation
If you use this model in your research, please cite pysentimiento, dataset and pre-trained model papers:
@misc{perez2021pysentimiento,
title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks},
author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque},
year={2021},
eprint={2106.09462},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{van2018semeval,
title={Semeval-2018 task 3: Irony detection in english tweets},
author={Van Hee, Cynthia and Lefever, Els and Hoste, V{\'e}ronique},
booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
pages={39--50},
year={2018}
}
@inproceedings{nguyen2020bertweet,
title={BERTweet: A pre-trained language model for English Tweets},
author={Nguyen, Dat Quoc and Vu, Thanh and Nguyen, Anh Tuan},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages={9--14},
year={2020}
}
- Downloads last month
- 84